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Chapter 1

Complex Manifolds

1.1 Real manifolds

This short section is just a reminder of material which should be known. Even if
you have not yet seen abstract manifolds, think of submanifolds of a Euclidean
space and convince yourself that they satisfy the conditions of the following
definition.

Definition 1.1.1. A manifold of dimension n and class Ck, k ≥ 0, is a Hausdorff
topological spaceM with a countable basis of topology and a covering {Ui; i ∈ I}
by open sets such that

(i) each Ui is homeomorphic to an open subset of Rn via a φ : Ui → φ(Ui) ⊂
Rn;

(ii) if Ui ∩ Uj 6= ∅, then φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φj(Ui ∩ Uj) is of class Ck.

The pairs (Ui, φi)i∈I are called charts, their collection an atlas, and the maps
φi◦φ−1

j are transition functions. A manifold is smooth if the transition functions
are smooth, and analytic, if transition functions are real-analytic.

Smooth functions, smooth maps between manifolds, etc. are defined by
passing to the charts. A tangent vector v at a point m of a smooth manifold M
can be defined either as

(i) an equivalence class of smooth curves γ : (−ε, ε) → M , γ(0) = m, under
the relation: γ1 ∼ γ2 iff (φi ◦γ1)′(0) = (φi ◦γ2)′(0) for some (or any) chart
(Ui, φi) with m ∈ Ui; or

(ii) a linear map Lv : C∞(U)→ R, U open and containing m, which satisfies
the product rule: Lv(fg) = f(m)Lv(g) + g(m)Lv(f).

Remark 1.1.2. Strictly speaking, in (ii) one needs to consider germs of smooth
functions rather than functions. See any book on differential geometry for the
precise definition.
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1.2. HOLOMORPHIC FUNCTIONS 5

The linear maps Lv are called derivations at m. The set of all tangent vectors at
m is an n-dimensional vector space called the tangent space of M at m, denoted
by Tm. The disjoint union TM =

⊔
m∈M TmM has a natural structure of a

smooth manifold of dimension 2n and the map π : TM → M , π(TmM) = m,
makes it into a vector bundle1. Sections of TM , i.e. smooth maps X : M → TM
such that π ◦ X = IdM are called vector fields. They can also be defined as
derivations of the algebra C∞(M), i.e. R-linear maps LX : C∞(M) → C∞(M)
which satisfy the product rule LX(fg) = fLX(g) + gLX(f).

1.2 Holomorphic Functions

Let V be an n-dimensional complex vector space. Then V can be regarded as a
2n-dimensional real vector space and the multiplication by i gives a real linear
endomorphism

J : V → V with J2 = −Id.

If (a1, . . . , an) is a complex basis of V , then (a1, . . . , an, ia1, . . . , ian) is a real
basis.
Conversely, given a 2n-dimensional real vector space V , every real endomor-
phism J : V → V with J2 = −Id makes V into a complex vector space via

(a+ ib)v = av + bJ(v), a, b ∈ R, v ∈ V.

Such a J is called a complex structure. −J is also a complex structure called
the conjugate complex structure and (V,−J) is denoted by V .

Example 1.2.1 (Standard example). V = Cn with basis e1 = (1, 0, . . . , 0), . . . , en =
(0, 0, . . . , 0, 1). Then

Cn ' R2n = {(x1, . . . , xn, y1, . . . , yn) | xi, yi ∈ R}

and the complex structure

J(x1, . . . , xn, y1, . . . , yn) = (−y1, . . . ,−yn, x1, . . . , xn).

We can generalise this example as follows:

Definition 1.2.2. Let E be an n-dimensional real vector space. The complexi-
fication of E is the real vector space EC = E ⊕ E together with the complex
structure

J : EC → EC, J(v, w) = (−w, v).

EC is equipped with the conjugation

C : EC → EC, C(v, w) = (v,−w).

Since C ◦J = −J ◦C, it is clear that C defines a complex isomorphism between
EC and EC.

1If you haven’t seen vector bundles yet, don’t worry: they’ll be discussed later.
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Complexification of Rn is the complex n-space Cn identified with R2n as
above. In this case the conjugation is given by

C(z1, . . . , zn) = (z1, . . . , zn).

If W = EC = E ⊕ E is the complexification of a real vector space E, then the
subspace

Re(E) = {(v, 0) | v ∈ E}

is called the real part of W . It is canonically isomorphic to E and we can write
W = E⊕iE. An arbitrary complex vector space is the complexification in many
different ways (non-canonically): just choose any complex basis B and define E
as the real span of B.

Let (V, J) be a real vector space with a complex structure. We complexify
V to V C and extend J (uniquely!) to a complex linear endomorphism of V C:

J(v + iw) = J(v) + iJ(w)

We still have J2 = −Id, so the eigenvalues of J are ±i. We set

V 1,0 = {z ∈ V C | J(z) = iz}, V 0,1 = {z ∈ V C | J(z) = −iz}.

These are complex subspaces of V C. Their elements are called vectors of type
(1,0) and (0,1) respectively.

Proposition 1.2.3. The following identities hold:

(i) V 1,0 = {X − iJX | X ∈ V } and V 0,1 = {X + iJX | X ∈ V };

(ii) V C = V 1,0 ⊕ V 0,1 (as a complex vector space sum);

(iii) Complex conjugation defines a real linear isomorphism between V 1,0 and
V 0,1.

Proof. Obvious.

Let J be a complex structure on V. Then we obtain a complex structure on
V ∗:

(Jϕ)(v) = ϕ(Jv).

Definition 1.2.4. Let (V, J) be a real vector space with a complex structure. A
differentiable function

f : V ⊃
open

U −→ C ' (R2, i)

is called holomorphic if it’s differential commutes with J , i.e.

df ◦ J = i df.
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Example 1.2.5. Let V = R2. Then df |p is a linear map R2 → R2 which should

commute with J =

(
0 −1
1 0

)
. A 2× 2-matrix

(
a11 a12

a21 a22

)
commutes with J iff

a12 = −a21, a11 = a22. Thus if f = u + iv, then df =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
commutes

with J iff
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

These are the Cauchy-Riemann equations. If we introduce differential operators

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
then the Cauchy-Riemann equations can be rewritten as

∂f

∂z
= 0.

Remark 1.2.6. A holomorphic f : Cn → C can be written locally as a convergent
power series in z1, . . . , zn (no z1, . . . , zn occur).

Observe that ∂
∂z = 1

2

(
∂
∂x − i

∂
∂y

)
is a vector of type (0, 1) on C2 = (R2)C.

In general, for an f : V → C we can extend df |p linearly to V C, and then for
any Z = X + iJX ∈ V 0,1 we have:

df |p(X + iJX) = df |p(X) + i df |p(JX).

This is equal to 0 iff df |p(JX) = i df |p(X). Thus:

Proposition 1.2.7. A function f : (V, J) −→ C is holomorphic iff

Z(f) = 0 ∀ Z ∈ V 0,1.

2

1.3 Complex manifolds

Definition 1.3.1. A complex manifold of (complex) dimension m is a topological
manifold (M,U) (with an atlas U consisting of charts ϕi : Ui → Cm) such that
the transition functions ϕi ◦ ϕ−1

j are holomorphic maps between open subsets
of Cm. In other words we have local complex coordinates on M.

Remark 1.3.2. Obviously a complex manifold of dimension m is smooth (real)
manifold of dimension 2m. We shall denote the underlying real manifold by
MR.

Examples 1.3.3. 1) the complex projective space CPm is the set of complex
lines in Cm+1, i.e.

CPm = Cm+1\{0}/∼, where z ∼ w :⇐⇒ ∃α ∈ C∗ : z = αw.
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Similarly to RPm we define an atlas

Ui = {[z0, . . . , zm] | zi 6= 0}, i = 0, . . . ,m,

ϕi : Ui −→ Cm, [z0, . . . , zm] 7−→
(
z0

zi
, . . . ,

ẑi
zi
, . . . ,

zm
zi

)
∈ Cm.

The transition functions are

ϕi ◦ ϕ−1
j (w1, . . . , wm) = ϕi([w1, . . . , wj−1, 1, wj+1, . . . , wm])

=

(
w1

wi
, . . . ,

ŵi
wi
, . . . ,

wj−1

wi
,

1

wi
,
wj+1

wi
, . . . ,

wm
wi

)
,

hence holomorphic. CPm is compact: We can restrict ∼ to the unit sphere
S2m+1 ⊂ Cm+1

S2m+1 =

{
zi ∈ Cm+1

∣∣∣∣ m∑
i=0

|zi|2 = 1

}
.

A line {αz | α ∈ C∗} intersects S2m+1 in the set {α | |α|2 = 1}, so in a circle
S1. Hence

CPm ' S2m+1/S1

as a real manifold (S1 is viewed as a group acting on S2m+1). E.g. for m = 1

S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}

and S1 acts via α(z, w) = (αz, αw). The quotient is S2: notice that the
following functions on C2 are invariant under the S1-action: a = |z|2, b = |w|2
and zw and they satisfy the equation cc̄ = ab. Hence, if we write x1 = Re c,
x2 = Im c, x3 = |z|2, then x2

1 + x2
2 = x3(1 − x3), which describes a sphere.

This projection S3 → S2 is called the Hopf fibration.

2) More generally, the complex Grassmannian Grk(Cn) is the set of all k-
dimensional subspaces in Cn. A basis of such a subspace can be written
as a k × n-matrix:

V =

v11 . . . v1n

...
...

vk1 . . . vkn

 .

Two such matrices define the same subspace if they are transformed into
each other by an element A ∈ GL(k,C) acting by the left multiplication.
For each sequence of integers λ = (λ1, . . . , λk) with 1 ≤ λ1 < · · · < λk ≤
n we can define a chart Uλ of Grk(Cn) consisting of subspaces such that
the columns with indices λi are linearly independent. In other words the
minor Vλ consisting of columns with indices λi is invertible. The matrix
V −1
λ V represents the same subspace and its λi-th column is ei. Such a

representation is unique. We define

φλ : Uλ → Ck(n−k)
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by associating to V the entries of the remaining n − k columns of V −1
λ V .

Check that the transition functions are holomorphic.

Another construction of Grassmannians: GL(n,C) acts transitively on the
set of k-dimensional subspaces. The isotropy subgroup of a point, e.g. the
subgroup which fixes S0 = 〈e1, . . . , ek〉 is

H =

 ∗ ∗
0 ∗

 }
k}
n− k

︸︷︷︸
k

︸︷︷︸
n−k

Thus Grk(Cn) is the coset space GL(n,C)/H. Both GL(n,C) and H are
complex Lie groups (open subsets of some CN ) and as for real Lie groups and
smooth manifolds one shows that the quotient space (complex Lie group)/(closed
complex subgroup) is a complex manifold. As for CPm, Grk(Cn) is compact:
this time observe that we can choose unitary bases of subspaces, and then
Grk(Cn) ' U(n)/U(k)× U(n− k).

3) As for smooth manifolds, level sets of submersions f : Cm+1 → C are
complex manifolds. If f is holomorphic and the holomorphic differential

df =
(
∂f
∂z1

, . . . , ∂f
∂zm+1

)
does not vanish on f−1(c), then f−1(c) is a complex

manifold. It is never compact - see homework.
On the other hand, if p : Cm+1 → C is a homogeneous polynomial, then
v ∈ p−1(0) ⇐⇒ αv ∈ p−1(0) ∀α ∈ C∗. Hence, if 0 is the only singular value
of p, then we can consider(

p−1(0)\{0}
)
/∼ where v ∼ w ⇔ ∃ α ∈ C∗ : v = αw,

and we obtain a compact complex submanifold of CPm.
Important examples of manifolds obtained in this way include the Fermat
hypersurfaces {[z0, . . . , zm] ∈ CPm | zk0 + · · ·+ zkm = 0}.

4) Let D be any lattice in Cm, i.e. a discrete subgroup of the real translation
group. Then Cm/D is a complex manifold, e.g. C/(Z⊕ iZ) is the torus.

5) Hopf manifold: Let λ > 1 be a real number. Consider the group Γ ' Z of
transformations of Cm\{0} given by

z 7→ λnz, n ∈ Z.

This is a free and properly discontinuous action and Cm\{0}/Γ is a complex
manifold. We can identify it as a real manifold. First of all

Cm\{0} ' R>0 × S2m−1, z 7→
(
‖z‖, z/‖z‖

)
.

In this representation λ (i.e. 1 ∈ Z) acts by λ.(r, u) = (λr, u), and so

Cm\{0}/Γ ' S1 × S2m−1.
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Definition 1.3.4. Let M be a complex manifold. A function f : M −→ C
is called holomorphic iff for every local holomorphic chart (U,ϕ) on M , the
function f ◦ ϕ−1 is holomorphic. More generally a map ϕ : M −→M ′ between
complex manifolds is called holomorphic iff for every chart (U,ϕ) on M and
(V, ψ) on M ′, the map ψ ◦ f ◦ ϕ−1 is holomorphic.

We now want to define holomorphic tangent vectors. This time the definition
in terms of derivations is much more suitable. First of all, for an open subset U
of M set:

Hol(U) := {f : U −→ C | f is holomorphic}.
We now define an (holomorphic) tangent vector at p ∈ M to be a complex
derivation of Hol(U), where U is any connected open neighbourhood of p, i.e. a
map δ : Hol(U)→ C, such that

δ(αf + βg) = αδ(f) + βδ(g), ∀ α, β ∈ C,
δ(fg) = f(p)δ(g) + δ(f)g(p).

This time there is no need for germs, since a holomorphic function on a con-
nected set is determined by its restriction to any open subset. In local complex
coordinates (z1, . . . , zm) we can write such a tangent vector v as

v =

m∑
i=1

vi
∂

∂zi
.

The complex vector space of all holomorphic tangent vectors will be denoted by
TpM (not to be confused with TpMR).

As for smooth manifolds, we consider the disjoint union

TM :=
⊔
p∈M

TpM.

This is again a complex manifold, called the holomorphic tangent bundle. The
base map is π : TM → M, π(TpM) = p. A holomorphic vector field is a
holomorphic map

X : M −→ TM s.t. π ◦X = id|M .

A holomorphic map F : M −→ N between holomorphic manifolds induces a
holomorphic map between tangent bundles

F∗ : TM −→ TN, F∗(δ)(f) = δ(f ◦ F ).

1.4 Almost complex manifolds

Let M be a complex manifold of real dimension 2n. Consider TMR (the real
tangent bundle).
Let (U,ϕ) be a holomorphic chart and define J : TpMR −→ TpMR, p ∈ U via

J(v) = (dϕ)−1 ◦ jn ◦ dϕ(v),
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where jn is the standard linear complex structure on R2n

jn(x1, . . . , xn, y1, . . . , yn) = (−y1, . . . ,−yn, x1, . . . , xn).

If (V, ψ) is another holomorphic chart around p, then

(dψ)−1 ◦ jn ◦ dψ(v) = (dψ)−1 ◦ jn ◦ d(ψ ◦ ϕ−1)︸ ︷︷ ︸
holomorphic

◦ dϕ(v)

= (dψ)−1 ◦ d(ψ ◦ ϕ−1) ◦ jn ◦ dϕ(v) = (dϕ)−1 ◦ jn ◦ dϕ(v),

so the definition does not depend on the chart. We obtain an endomorphism of
the tangent bundle (i.e. a (1, 1)-tensor)

J : TMR −→ TMR

satisfying J2 = −Id.

Definition 1.4.1. A (1, 1)-tensor J on a smooth manifold M satisfying J2 = −Id
is called an almost complex structure. The pair (M,J) is then called an almost
complex manifold.

A complex manifold is therefore canonically an almost complex manifold. We
want to investigate the converse. Let (M,J) be an almost complex manifold.
Complexify the tangent bundle TCM (so complexify the vector space TpM at
every point) and consider the subbundles of vectors of type (1, 0) and (0, 1):

T 1,0M = {X − iJX | X ∈ TM} – the +i-eigenbundle,

T 0,1M = {X + iJX | X ∈ TM} – the −i-eigenbundle.

Suppose that J arises from complex coordinates {z1, . . . , zn} (i.e. (M,J) really
is a complex manifold). Then the vectors

∂

∂z1
, . . . ,

∂

∂zn
, where

∂

∂zi
=

1

2

(
∂

∂xi
− i ∂

∂yi

)
are of type (1, 0) and

∂

∂z1
, . . . ,

∂

∂zn
, where

∂

∂zi
=

1

2

(
∂

∂xi
+ i

∂

∂yi

)
of type (0, 1). They form bases of T 1,0

p M and T 0,1
p M , respectively. If Z,W are

two local sections of T 1,0M , i.e.

Z =

n∑
i=1

Zi
∂

∂zi
, W =

n∑
j=1

Wi
∂

∂zj
,

then

[Z,W ] =

n∑
i,j=1

(
Zi
∂Wj

∂zi
−Wi

∂Zj
∂zi

)
∂

∂zj
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is again a local section of T 1,0M . Similarly if Z,W are local sections of T 0,1M ,
then so is [Z,W ]. Thus the condition2 [T 0,1M,T 0,1M ] ⊂ T 0,1M is a necessary
condition for the existence of complex coordinates inducing J . (Formally, this
is similar to the involutivity required in the Frobenius theorem.)

It turns out that this necessary condition is also sufficient:

Theorem 1.4.2 (Newlander-Nirenberg). Let (M,J) be an almost complex man-
ifold. The almost complex structure J arises from a holomorphic structure iff

[T 0,1M,T 0,1M ] ⊂ T 0,1M.

One says then that J is integrable and refers to J simply as complex structure.

Let us work out what this condition means. Compute

[X + iJX, Y + iJY ] = [X,Y ]− [JX, JY ] + i([JX, Y ] + [X,JY ]).

This should again be of the form Z + iJZ, which means that

[JX, Y ] + [X, JY ] = J([X,Y ]− [JX, JY ]).

Equivalently, the tensor3

N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ]

vanishes identically. N is called the Nijenhuis tensor (or the torsion of an
almost complex manifold). Therefore an almost complex structure J arises
from complex coordinates (i.e. (M,J)) is a complex manifold) iff the Nijenhuis
tensor N = NJ vanishes. The proof of the Newlander-Nirenberg theorem in
full generality is much too long to present it here; next week I’ll present a proof
under the additional assumption that (M,J) is real-analytic. In the meantime,
let us look at spheres.

Theorem 1.4.3 (Kirchhoff). If Sn admits an almost complex structure, then
Sn+1 has trivial tangent bundle.

Proof. Let J be an almost complex structure on Sn. View Sn as the equator
in Sn+1, which in turn is the unit sphere in Rn+2. Set e = (0, . . . , 0, 1) ∈ Rn+2,
so that every vector x ∈ Sn+1 can be written uniquely as x = ae + by, b ≥ 0,
y ∈ Sn. Consider

TyS
n = {z ∈ Rn+1 | z ⊥ y},

and define σx : Rn+1 −→ TxS
n+1 by

σx(y) = ay − be
σx(z) = az + bJy(z), for z ∈ y⊥ = TyS

n.

2[T 0,1M,T 0,1M ] is a shorthand for
[
Γ(T 0,1M),Γ(T 0,1M)

]
⊂ Γ(T 0,1M).

3In Homework 2 you are asked to show that this is a tensor.
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Let us check that this is in TxS
n+1, i.e. that the right-hand side is orthogonal

to x = ae+ by. Obviously 〈ay − be, ae+ by〉 = 0. On the other hand σx(z) ⊥ y
by definition and, since σx(z) ∈ Rn, σx(z) ⊥ e. Hence σx(z) ⊥ x. Thus we
have a global map Sn × Rn+1 −→ TSn+1, (x, v) 7→ σx(v), linear for each x,
and we only need to check that it is a bijection for each x. We show that
Ker(σx) = 0. Clearly σx(y) 6= 0. Suppose that z 6= 0 and σx(z) = 0. This
means that bJy(z) = −az, and if b 6= 0, then z is an eigenvector of Jy with real
eigenvalue, which is impossible. On the other hand, if b = 0, then a = 0, so
x = 0 /∈ Sn+1.

Adams showed in 1960 that TSn+1 is trivial if and only if n + 1 = 1, 3, 7.
Hence only S2 and S6 can admit an almost complex structure. For S2 we
already know this, since S2 is diffeomorphic to CP1. Here is another description
using quaternions, i.e. the algebra H consisting of pairs of complex numbers
with coordinate-wise addition and multiplication given by

(z1, z2)(z′1, z
′
2) = (z1z

′
1 − z2z′2, z1z

′
2 + z2z′1).

This can be also interpreted by writing an element of H as z1 + z2j, where
j2 = −1 and ij = −ji. The multiplication is then determined by these identities
(plus the associativity and the distributivity). This multiplication is associative,
but not commutative.

The quaternionic conjugate of q = (z1, z2) is q = (z1,−z2). We have qq =
(z1z1+z2z2, 0) and we define |q|2 = z1z1+z2z2. A quaternion is called real (resp.
purely imaginary) if q = q (resp. q = −q). q is purely imaginary iff z1 = −z1,
so these form a 3-dimensional subspace ImH. The scalar product on ImH ' R3

is given by 〈q, q′〉 = Re(qq′) and the vector product by q × q′ = Im(qq′). Now:

S2 = {q ∈ ImH | |q| = 1} and TqS
2 = {q′ ∈ ImH | 〈q, q′〉 = 0}.

We define Jq : TqS
2 → TqS

2 by

Jq(q
′) = q × q′.

Then J2
q (q′) ∈ TqS2, since q × q′ ⊥ q. Moreover

J2
q (q′) = q×(q×q′) = q×(qq′−Re qq′) = q×(qq′) = Im q(qq′) = Im q2q′ = −q′,

since any quaternion in S2 satisfies q2 = −1. Therefore J is an almost complex
structure on S2.

For S6 we repeat the procedure. The algebra O of Cayley numbers (or
octonions) is the set of pairs of quaternions with multiplication

(q1, q2)(q′1, q
′
2) = (q1q

′
1 − q′2q2, q

′
2q2 + q2q′1).

This multiplication is not even associative. It does, however, satisfy the so-called
alternative law :

x(xx′) = (xx)x′ , (x′x)x = x′(xx),
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i.e. associativity if two neighbouring factors are the same.
Again we have a conjugation:

(q1, q2) = (q1,−q2) with xx = (q1q1 + q2q2, 0),

and therefore a norm |x|2 = q1q1 + q2q2. Again we can define real and purely
imaginary Cayley numbers. The vector space of purely imaginary Cayley num-
bers is 7-dimensional, and it is equipped with a scalar product 〈x, x′〉 = −Re(xx′)
and a vector product x × x′ = Im(xx′). We have x × x′ = −x′ × x and
〈x× x′, x′′〉 = 〈x, x′ × x′′〉. Consider

S6 = {x ∈ ImO | |x| = 1} and TxS
6 = {y ∈ ImO | 〈x, y〉 = 0}.

Define Jx(y) = x × y. Again Jx : TxS
6 → TxS

6 and again J2
x = −Id (ob-

serve that in the above calculation of J2
q for quaternions one needs exactly the

alternative law). This almost complex structure on S6 has N 6= 0, i.e. it is non-
integrable. It is unknown whether S6 admits a complex structure, i.e. whether
S6 is a complex manifold.

We have the following application:

Example 1.4.4. Let M be an oriented hypersurface in R7. For m ∈M , consider
the unit normal vector νm corresponding to the orientation. Then TmM '
ν⊥m ' TνmS6. Therefore the almost complex structure on S6 induces an almost
complex structure on M . Thus every oriented hypersurface in R7 is an almost
complex manifold.

1.5 Decomposition of the complexified exterior
bundle

Let (M,J) be an almost complex manifold. We have seen that a complex
structure on a vector space V induces a complex structure on V ∗. Therefore we
obtain a complex structure on each T ∗mM and consequently a decomposition of
the complexified cotangent bundle

(T ∗M)C = T ∗M ⊗ C

into the (1, 0)- and (0, 1)-parts. For convenience, we shall write Λ1
C = (T ∗M)C,

Λ1,0M =
(
(T ∗M)C

)(1,0)
, and Λ0,1M =

(
(T ∗M)C

)(0,1)
. We have (see §1.2):

Λ1,0M = {ϕ− iϕ ◦ J | ϕ ∈ T ∗M}
Λ0,1M = {ϕ+ iϕ ◦ J | ϕ ∈ T ∗M}.

Example 1.5.1. On Cn we have (Jdxi)(
∂
∂yi

) = dxi(J
∂
∂yi

) = dxi(− ∂
∂xi

) = −1, so

Λ1,0 = {dxi + idyi} and Jdxi = −dyi.

Lemma 1.5.2. We have

Λ1,0M = {ω ∈ Λ1
CM | ω(Z) = 0 ∀ Z ∈ T 0,1M}

Λ0,1M = {ω ∈ Λ1
CM | ω(Z) = 0 ∀ Z ∈ T 1,0M}
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Proof. ω ∈ Λ1,0M ⇐⇒ ω ◦ J = iω ⇐⇒ (ω ◦ J)(V ) = iω(V ) ∀ V ∈ TCM .
If we decompose V = V 1,0 + V 0,1, then

(ω ◦ J)(V ) = ω(JV ) = ω(iV 1,0 − iV 0,1) = iω(V 1,0)− iω(V 0,1)

This is equal to iω(V ) iff ω(V 0,1) = 0. Analogously for Λ0,1M .

We now decompose the k-th exterior power ΛkCM of T ∗M ⊗ C:

ΛkCM = Λk(Λ1,0M ⊕ Λ0,1M) =
⊕
p+q=k

Λp(Λ1,0M)⊗ Λq(Λ0,1M).

We shall write Λp,qM = Λp(Λ1,0M) ⊗ Λq(Λ0,1M). If ϕ1, . . . , ϕn is a basis of
Λ1,0
m M , then ϕ1, . . . , ϕn is a basis of Λ0,1

m M , and the set of alternating forms

ϕi1 ∧ · · · ∧ ϕip ∧ ϕj1 ∧ · · · ∧ ϕjq , with i1 < · · · < ip ≤ n, j1 < · · · < jq ≤ n,

is a basis of Λp,qm M . Therefore the rank of Λp,qM is
(
n
p

)(
n
q

)
.

Sections of ΛkCM are C-valued differential forms; sections of Λp,qM are called
differential forms of type (or degree) (p,q) and their space is denoted by Ωp,q(M).

Proposition 1.5.3.

dΩp,q ⊂ Ωp+2,q−1 ⊕ Ωp+1,q ⊕ Ωp,q+1 ⊕ Ωp−1,q+2.

Proof. Let ω ∈ Ωp,q(M). We can write it locally as

ω = fϕi1 ∧ · · · ∧ ϕip ∧ ϕj1 ∧ · · · ∧ ϕjq ,

where ϕ1, . . . , ϕn is a local frame of (1, 0)-forms. We know that df ∈ Ω1(M) =
Ω1,0(M) ⊕ Ω0,1(M) and dϕs ∈ Ω2(M) = Ω2,0(M) ⊕ Ω1,1(M) ⊕ Ω0,2(M) and
similarly for ϕs. Applying d to ω decomposed as above proves the claim.

For integrable almost complex structures this becomes much simpler, since
we can choose a frame of the form ϕi = dzi, where the zi are local complex
coordinates. Then d(dzi) = d(dz̄i) = 0, and so

d(fdzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq )
= df ∧ dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq ∈ Ωp+1,q ⊕ Ωp,q+1,

and also df ∈ Ω1,0 ⊕ Ω0,1. In fact we have:

Proposition 1.5.4. For an almost complex manifold M, the following condi-
tions are equivalent:

a) If Z and W are complex vector fields of type (1, 0), then so is [Z,W ].

b) If Z and W are complex vector fields of type (0, 1), then so is [Z,W ].

c) dΩ1,0 ⊂ Ω2,0 ⊕ Ω1,1 and dΩ0,1 ⊂ Ω1,1 ⊕ Ω0,2.
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d) dΩp,q ⊂ Ωp+1,q ⊕ Ωp,q+1 ∀p, q.

e) the almost complex structure is integrable (i.e. N = 0).

Proof. Owing to the Newlander-Nirenberg theorem, we already know that a)
⇐⇒ b) ⇐⇒ e). Clearly d) =⇒ c) and the argument in the proof of
Proposition 1.5.3 implies that c) =⇒ d). It remains to show that c) is equivalent
to a) and b). Let ω be a 1-form of type (0, 1) and Z,W vector fields of type
(1, 0). A well-known formula for the exterior derivative gives then

dω(Z,W ) = Z(ω(W )︸ ︷︷ ︸
=0

)−W (ω(Z)︸ ︷︷ ︸
=0

)− ω([Z,W ]) = −ω([Z,W ]). (1.5.1)

Observe that the 2nd formula in c) (denote it by c2)) is equivalent to dω(Z,W ) =
0 for all ω ∈ Ω0,1 and (1, 0) vector fields Z,W . Formula (1.5.1) implies that this
is equivalent to [Z,W ] being of type (1, 0). Thus c2) ⇐⇒ a). Similarly c1)
⇐⇒ b).

Given two manifolds M and M ′ and a smooth map f : M −→ M ′, we can
extend the differential f∗ to a C-linear mapping of TCM to TCM ′, which we still
denote by f∗. Similarly4 f∗ maps complex differential forms on M ′ to complex
differential forms on M .

Definition 1.5.5. A smooth map f : (M,J) −→ (M ′, J ′) between almost com-
plex manifolds is called almost complex if f∗ ◦ J = J ′ ◦ f∗.

Note that for complex manifolds “almost complex map” is the same as “holo-
morphic map”.

Proposition 1.5.6. For a smooth map f : (M,J) −→ (M ′, J ′) between almost
complex manifolds the following conditions are equivalent:

a) If Z is a complex tangent vector of type (1, 0) on M , then so is f∗(Z) on M ′.

b) If Z is a complex tangent vector of type (0, 1) on M , then so is f∗(Z) on M ′.

c) If ω is a complex differential form of type (p, q) on M ′, then f∗ω is a differ-
ential form of type (p, q) on M , for all p, q.

d) f is almost complex.

Proof. Homework.

Definition 1.5.7. An infinitesimal automorphism of an almost complex structure
J on M is a vector field X such that LXJ = 0. (In other words, the local flow
of X consists of (local) almost complex transformations.)

Proposition 1.5.8. A vector field X is an infinitesimal automorphism of an
almost complex structure J iff

[X, JY ] = J([X,Y ]) ∀ Y ∈ Γ(TM).
4Recall that the pullback f∗ω of a differential k-form is defined by f∗ω(X1, . . . , Xk) =

ω(f∗X1, . . . , f∗Xk).
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Proof.

[X, JY ] = LX(JY ) = (LXJ)Y + JLXY = (LXJ)Y + J([X,Y ]).

Remark 1.5.9. If X is an infinitesimal automorphism of J , JX need not to be.
In fact, the last proposition implies that if X is an infintesimal automorphism,
then, for all vector fields Y ,

N(X,Y ) = [JX, JY ]− J [JX, Y ]− [X,Y ]− J [X,JY ] = [JX, JY ]− J [JX, Y ],

and so JX is also an infinitesimal automorphism iff N(X,Y ) = 0 ∀ Y .
Conversely, it follows that if N ≡ 0, i.e. the almost complex structure J is
integrable, then the Lie algebra a of infinitesimal automorphisms of J is stable
under J , and [X, JY ] = J [X,Y ] ∀X,Y ∈ a. Hence a is a complex Lie algebra
(possibly infinite-dimensional).

Proposition 1.5.10. On a complex manifold M , the Lie algebra of infinitesimal
automorphisms of the complex structure J is isomorphic to the Lie algebra of
holomorphic vector fields, the isomorphism being given by

X 7→ Z =
1

2
(X − iJX).

Proof. Suppose that X − iJX is holomorphic and Y ∈ Γ(TM) is arbitrary. If
f is a local holomorphic function, then

(X + iJX)(f) = 0 =⇒ (X − iJX)(f) = (2X − (X + iJX))(f) = 2X(f).

Hence X(f) is holomorphic, which means that (Y + iJY )(X(f)) = 0 and of
course (Y + iJY )(f) = 0. Therefore

[Y + iJY,X](f) = (Y + iJY )(X(f))−X((Y + iJY )(f)) = 0.

On the other hand:

[Y + iJY,X](f) = 0 ⇐⇒ [Y + iJY,X] is of type (0,1)

⇐⇒ Im([Y + iJY,X]) = J Re([Y + iJY,X])

⇐⇒ [JY,X] = J [Y,X] ⇐⇒ X ∈ a.

Conversely, suppose that X is an infinitesimal automorphism of J . Due to
Proposition 1.5.8, we know that [JY,X] = J [Y,X], i.e. [Y + iJY,X] is of
type (0, 1) for any vector field Y . Then (reversing the argument above) [Y +
iJY,X](f) for any local holomorphic function f , so (Y +iJY )(X(f)) = 0, which
means that X(f) is holomorphic, and hence X − iJX is holomorphic.

Thus the map θ : X 7→ 1
2 (X − iJX) is a linear isomorphism between in-

finitesimal automorphism of J and holomorphic vector fields on M . We need to
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check that this map is a Lie algebra homomorphism:

[θ(X), θ(Y )] =
1

4
[X − iJX, Y − iJY ] =

1

2
([X,Y ]− [JX, JY ]− i[JX, Y ]− i[X, JY ])

=
1

4
([X,Y ] + [X,Y ]− iJ [X,Y ]− iJ [X,Y ]) =

1

2
([X,Y ]− iJ [X,Y ]) = θ([X,Y ])

Definition 1.5.11. A real vector field X on a complex manifold is called real-
holomorphic if X − iJX is a holomorphic vector field.

We shall now prove the Newlander-Nirenberg theorem in the case when both
the manifold and the almost complex structure are real-analytic.

Theorem 1.5.12 (Newlander-Nirenberg theorem in analytic case). A real an-
alytic almost complex structure with vanishing torsion is integrable, i.e. it is a
complex structure.

Before the formal proof, let me describe the intuitive idea behind it. Since
M is real analytic (i.e. the transition functions are), we can complexify M , i.e.
construct a complex manifold MC such that M sits inside MC (as a fixed-point
set of an anti-holomorphic involution, but we shall not need this explicitly). In
order to do this, extend each transition function φj ◦ φ−1

i : φi(Ui) → φj(Ui)
into the complex domain, i.e. to a small neighbourhood of φi(Ui) in Cn (small
enough so that the extended map remains a diffeomorphism). We can do this
by expanding a transition function locally into power series and replacing each
real coordinate xi with a complex coordinate zi. Since J is real analytic, it
extends analogously to a holomorphic endomorphism J : TMC → TMC satis-
fying J2 = −Id, where TMC is the holomorphic vector bundle. We consider
the ±i-eigenbundles, denoted by T+ and T−. These are complex subbundles
of TMC and they satisfy [T±, T±] ⊂ T±, since these conditions hold on M .
Using the holomorphic version of the Frobenius theorem, MC is foliated into
submanifolds, the tangent space of which at each point is T−. The leaf space
(which is well defined at least in a small neighbourhood of each point) is then a
complex manifold. In a neighbourhood of each m ∈M the leaf space is simply
M , and so we obtain local complex coordinates on M . These induce the given
J , since J is i on T+.

We proceed with a more formal proof. We need the following lemma:

Lemma 1.5.13. Let (M,J) be an almost complex manifold with dimRM = 2n.
If every point of M has a neighbourhood U and n complex valued smooth func-
tions f1, . . . , fn : U → C such that df1, . . . , dfn are of type (1, 0) and linearly
independent at every point of U , then the almost complex structure J is inte-
grable.

Proof. By taking U small enough, we may assume that f = (f1, . . . , fn) is a
diffeomorphism of U onto an open subset of Cn. Let V be a small neighbourhood
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of another point with a similar g = (g1, . . . , gn) : V → Cn (also a diffeomorphism
onto image). Suppose that U ∩ V 6= ∅. It follows from Proposition 1.5.6 that
f and g are almost complex mappings (since f∗ and g∗ map (1, 0)-vectors to
(1, 0)-vectors). Hence f ◦ g−1 is also almost complex, which is means f ◦ g−1 is
holomorphic, since the almost complex structure of Cn is integrable. Thus we
obtain a complex atlas on M , which induces the given almost complex structure
J .

Proof of the Newlander-Nirenberg theorem. An immediate consequence of the
above lemma is that we only need to prove the theorem locally. Let U be a
small neighbourhood in M and x1, . . . , x2n (real-analytic) local coordinates in
U . The 1-forms

dx1 + iJdx1, . . . , dx2n + iJdx2n

span Λ1,0
x M at each x, so we can choose n among them which are linearly

independent everywhere on U (perhaps after making U smaller). Denote these
by ω1, . . . , ωn and write

ωi =

2n∑
α=1

f iα(x)dxα.

The assumption that J is real analytic means that the coefficients f iα(x) are real
analytic (and C-valued). We may consider U as a neighborhood of the origin
in R2n with coordinates x1, . . . , x2n. Complexify R2n to C2n with coordinates
z1, . . . , z2n where zi = xi +

√
−1 yi.

Since f iα(x) are real-analytic, we can extend them to holomorphic functions

f iα(z) on a neighborhood Ũ of U in C2n by taking the power series expansion of
f iα(x) and replacing x with z. Similarly we can extend the complex conjugate

functions f iα(x) to holomorphic functions f̃ iα(z) on Ũ (maybe after making Ũ
smaller). Set

Ωi =

2n∑
α=1

f iα(z)dzα and Ω̃i =

2n∑
α=1

f̃ iα(z)dzα.

Since ωi are linearly independent, so are ω1, . . . , ωn, ω1, . . . , ωn, i.e. the matrix[
f iα(x)

f̃ iα(x)

]
is nonsingular. Hence the (2n× 2n)-matrix formed by f iα(z) and f̃ iα(z) remains
nonsingular for z in a small neighborhood of U in C2n and, consequently, we can
take Ũ small enough so that Ω1, . . . ,Ωn, Ω̃1, . . . , Ω̃n are linearly independent at
each point of Ũ . Therefore we can express each dΩj as

dΩj =
∑
k<l

Ajkl Ωk ∧ Ωl +
∑
k,l

Bjkl Ωk ∧ Ω̃l +
∑
k<l

Cjkl Ω̃k ∧ Ω̃l, (1.5.2)

where the coefficients are holomorphic functions on Ũ .
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On the other hand, the equivalence of conditions a) and c) in Proposition
1.5.4 (which we proved directly, without resorting to the Newlander-Nirenberg
theorem) means that dωj is a sum of terms of type (2, 0) and (1, 1). If we restrict
(1.5.2) to U , i.e. to y = 0, then it follows that Cjkl|U = 0. Since the functions

Cjkl are holomorphic, they must= vanish identically on Ũ . Hence

dΩj =
∑
k<l

Ajkl Ωk ∧ Ωl +
∑
k,l

Bjkl Ωk ∧ Ω̃l.

We now appeal to the following holomorphic version of the Frobenius theorem.

Theorem 1.5.14 (Frobenius). Let ϕ1 . . . , ϕr be everywhere linearly indepen-
dent holomorphic 1-forms in a neighborhood V of 0 in Cm. If

dϕj =

r∑
k=1

ψjk ∧ ϕ
k, j = 1, . . . , r,

where each ψjk is a holomorphic 1-form on V , then there exists a smaller neigh-
borhood W of 0 and holomorphic functions g1, . . . , gr on W , such that

ϕj =

r∑
k=1

pjk dg
k, j = 1, . . . , r,

where the pjk are holomorphic functions on W .

Continuation of the proof of the Newlander-Nirenberg theorem. It follows that
there exist holomorphic functions G1, . . . , Gn in a neighborhood of 0 in C2n,
such that

Ωj =

n∑
k=1

P jkdG
k, j = 1, . . . , r.

If we write gk = Gk|U and pjk = P jk |U , then ωi =
n∑
k=1

pjkdg
k.

Since ω1, . . . , ωn are linearly independent (1, 0)-forms on U , dg1, . . . , dgk are
also everywhere linearly independent 1-forms of type (1, 0), and the assumption
of Lemma 1.5.13 is satisfied. Therefore J is integrable.

Further reading:

i) A relatively simple proof of the full version of the Newlander-Nirenberg
theorem may be found in: L. Nirenberg, “Lectures on Linear Partial
Differential Equations”, AMS, 1973.

ii) Whenever you have a geometric structure, you may ask about
homogeneous examples and their classification. You can read about
invariant almost complex structures on homogeneous manifolds in §X.6
of Kobayashi & Nomizu, vol. II.
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iii) In the last question session, you asked about the space of all almost
complex structures on a given manifold. The only nontrivial results I
found are in the 2018 Ph.D. thesis by Bora Ferlengez “Studying the
Space of Almost Complex Structures on a Manifold Using de Rham
Homotopy Theory”. It is available online at:
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=

3931&context=gc_etds Be warned, however: this is not easy stuff and
will require serious background reading in topology.

1.6 Dolbeault cohomology

Let M be an complex manifold. According to Proposition 1.5.4 we have

dΩp,q(M) ⊂ Ωp+1,q(M)⊕ Ωp,q+1(M).

This means that we can decompose the exterior derivative

d : Ωk(M) −→ Ωk+1(M)

as d = ∂ + ∂̄, where

∂ : Ωp,q(M) −→ Ωp+1,q(M) and ∂̄ : Ωp,q(M) −→ Ωp,q+1(M).

In local coordinates, if we write ϕ =
∑
I

ϕI dzi1 ∧ · · · ∧ dzip ∧ dzi1 ∧ · · · ∧ dziq
(where I denotes multi-indices), then

∂̄ϕ =
∑
I

∑
s

∂ϕI
∂zs

dzs ∧ dzi1 ∧ · · · ∧ dzip ∧ dzi1 ∧ · · · ∧ dziq ,

and similarly for ∂.

Lemma 1.6.1. The following identities hold:

∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.

Proof. We have

0 = d2 = (∂ + ∂̄)2 = ∂2 + (∂∂̄ + ∂̄∂) + ∂̄2.

Now just observe that, on Ωp,q(M), ∂2 takes values in Ωp+2,q(M), (∂∂̄ + ∂̄∂) in
Ωp+1,q+1(M), and ∂̄2 in Ωp,q+2(M).

Remark 1.6.2. In local coordinates, the equation ∂̄2 = 0 is equivalent to

∂2

∂zi∂zj
=

∂2

∂zj∂zi
,

analogously to d2.

https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=3931&context=gc_etds
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=3931&context=gc_etds
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We denote by Zp,q
∂̄

(M) the space of ∂̄-closed forms of type (p, q), i.e.

Zp,q
∂̄

(M) = Ker
(
∂̄ : Ωp,q(M) −→ Ωp,q+1(M)

)
.

Since ∂̄2 = 0, Im ∂̄ ⊂ Ker ∂̄, and we define the Dolbeault cohomology groups of
M to be

Hp,q

∂̄
(M) =

Ker(∂̄ : Ωp,q(M) −→ Ωp,q+1)

Im(∂̄ : Ωp,q−1 −→ Ωp,q(M))
=

Zp,q
∂̄

(M)

∂̄(Ωp,q−1(M))
.

These are complex vector spaces. Observe (c.f. Prop. 1.5.6) that for a holomor-
phic map f : M → N of complex manifolds we have f∗(Ωp,q(N)) ⊂ Ωp,q(M).
Moreover ∂̄ ◦ f∗ = f∗ ◦ ∂̄, and hence f induces a linear map

f∗ : Hp,q

∂̄
(N)→ Hp,q

∂̄
(M).

Recall5 that the key fact about the de Rham cohomology is the Poincaré
Lemma:

“An open ball in Rn has trivial de Rham cohomology.”

We have a Dolbeault analogue of this:

Proposition 1.6.3 (∂̄-Poincaré Lemma). Let ∆ = ∆(r) be an open polydisk in
Cn, i.e.

∆ = {(z1, . . . , zn) ∈ Cn | |zi| < ri}, ri ∈ (0,∞].

Then Hp,q

∂̄
(∆) = 0 for all q ≥ 1 and all p.

Remark 1.6.4. On the other hand, observe thatHp,0

∂̄
(∆) is the infinite-dimensional

vector space of holomorphic p-forms on ∆.

Proof. We first consider the case n = 1. Observe that if dimM = 1, then
Ω2,0(M) = Ω0,2(M) = 0, so that Ω2(M) = Ω1,1(M). Consider the statement
H0,1

∂̄
(∆) = 0. Since Ω0,2(∆) = 0, any (0, 1)-form is ∂̄-closed, so we need to show

that for any g ∈ C∞(∆), the (0, 1)-form g(z, z)dz is in the image of ∂̄, i.e. that
there exists an f ∈ C∞(∆) such that

gdz = ∂̄(f) =
∂f

∂z
dz.

This is equivalent to showing that there exists a solution to ∂f
∂z = g for a given

g. We first show this for compactly supported g.

Lemma 1.6.5. Let g be a C∞-function with compact support on C. Then there
exists a C∞-function f on C such that ∂f

∂z = g. Moreover f is defined up to
addition of a holomorphic function.

5If you have not seen the de Rham cohomology, it is defined the same way as Dolbeault
cohomology, but using d instead of ∂̄.
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Proof. Set

f(z, z) = − 1

2πi

∫
C

g(ζ, ζ)

ζ − z
dζ ∧ dζ =

η=z−ζ

1

2πi

∫
C

g(z − η, z − η)

η
dη ∧ dη.

This converges for large η, since g has compact support. For small η, we rewrite
in polar coordinates and get∣∣∣∣∣∣∣

1

2πi

∫
B(0,ε)

(. . . )

∣∣∣∣∣∣∣ ≤ C
ε∫

0

2π∫
0

1

r
r dr dθ,

which converges. Hence f is well defined for all z, and we can write

f(z, z) =
1

2πi
lim
ε→0

∫
C\∆ε

g(z − η, z − η)

η
dη ∧ dη.

The convergence is uniform, which means that we can differentiate under the
integral and conclude that∫

C

1

η

∂i+jg

∂xi∂yj
(z − η, z − η) dη ∧ dη

converges, owing to the same argument as before. Therefore f is smooth. We
now check that ∂f

∂z = g. First of all:

∂f

∂z
= lim
ε→0

1

2πi

∫
C\∆ε

1

η

∂g

∂z
(z − η, z − η) dη ∧ dη.

We can rewrite:

1

η

∂g

∂z
(z−η, z−η) dη∧dη = −1

η

∂g

∂η
(z−η, z−η) dη∧dη = d

(
g(z − η, z − η)

η
dη

)
,

because d(ϕdη) = ∂ϕ
∂η dη ∧ dη. From the Stokes theorem we conclude:

1

2πi

∫
C\∆ε

1

η

∂g

∂z
(z − η, z − η) dη ∧ dη =

1

2πi

∫
C\∆ε

d

(
g(z − η, z − η)

η
dη

)

=
1

2πi

∫
∂∆ε

g(z − η, z − η)

η
dη =

η=εeiθ

1

2πi

2π∫
0

g(z − εeiθ, z − εe−iθ)
εeiθ

iεeiθdθ

=
1

2π

2π∫
0

g(z − εeiθ)dθ

︸ ︷︷ ︸
average of g over the circle

ε→0−→ g(z).

The second statement is obvious.
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Let now n be arbitrary.

Lemma 1.6.6. Let U ⊂ Cn be an open polydisk and K a compact polydisk
inside U . Let ω be a ∂̄-closed (p, q)-form on U , q ≥ 1. Then there exists an
open polydisk V with K ⊂ V ⊂ U and a (p, q−1)-form θ on U , such that ∂̄θ = ω
on V .

Proof. We first reduce to the case p = 0. A (p, q)-form can be written as

ω =
∑

I=(i1,...,ip)

ωI ∧ dzi1 ∧ · · · ∧ dzip ,

where each ωI is a (0, q)-form. Then:

∂̄ω =
∑
I

(∂̄ωI) ∧ dzi1 ∧ · · · ∧ dzip .

Hence ω is ∂̄-closed if and only if each ωI is ∂̄-closed. Therefore, if the lemma is
true for p = 0, then we can find polydisks VI with K ⊂ V I ⊂ U and (0, q − 1)-
forms θI s.t. ∂̄θI = ωI on VI . On V =

⋂
I

VI we then have ∂̄θ = ω, where

θ =
∑
I

θI ∧ dzi1 ∧ · · · ∧ dzip .

Thus we can assume that ω is a ∂̄-closed (0, q)-form. We proceed by induction
on the largest integer k such that dzk appears in ω. If k = 0, then no dzk
appears, and ω = 0 and we can take θ = 0. Suppose that the claim holds for all
integers < k and let ω = ω0 + dz̄k ∧ φ, where both ω0 and φ contain only dz̄i
with i < k. Write

φ =
∑

1≤j1 ≤ · · · ≤ jq−1︸ ︷︷ ︸
=:J

<k

gJ dzj1 ∧ · · · ∧ dzjq−1
. (1.6.1)

Observe that if l > k, then∑
J

∂gJ
∂zl

dzl ∧ dz̄k ∧ dzj1 ∧ · · · ∧ dzjq−1

is the only term containing dz̄l∧dz̄k∧zj1 ∧· · ·∧dzjq−1
in ∂̄ω. Therefore ∂gJ

∂zl
= 0

for l > k, so that each gJ is holomorphic in zk+1, . . . , zn. We can multiply ω
by a bump function, compactly supported inside U and equal to 1 on an open
polydisk V such that K ⊂ V ⊂ U . According to Lemma 1.6.5, we can find
functions fJ such that ∂fJ

∂̄zk
= gJ for each J occuring in (1.6.1). Since the

fJ are defined by integrating with respect to z̄k, they remain holomorphic in
zk+1, . . . , zn. Set

α =
∑
J

fJ dzj1 ∧ · · · ∧ dzjq−1 ,
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where the summation is over the same J as in (1.6.1). Then dz̄k ∧ φ − ∂̄α
contains only dz̄i with i < k (on V ). The same is then true for ω − ∂̄α. From
the inductive assumption, ω− ∂̄α = ∂̄β on some smaller polydisk, which means
that ω = ∂̄(α+ β).

Proof of the ∂̄-Poincaré lemma for arbitrary n. Let Ui, i ∈ N, be a monotone
increasing sequence of polydisks such that

⋃
Ui = ∆ and each U i is compact,

with U i ⊂ Ui+1. As in the proof of lemma 1.6.6, we only need to consider p = 0.
Owing to that lemma, there exist θi ∈ Ω0,q−1(∆) such that ∂̄θi = ω on Ui.
We need to show that we can choose θi in such a way that they converge to a
(0, q)-form θ on ∆. We proceed by induction on q.

If q = 1, then θi are smooth functions on ∆ with ∂̄θi = ω on Ui. If α ∈
C∞(∆) satisfies ∂̄α = ω in Ui+1 (e.g. α = θi+1), then ∂̄(θi − α) = 0 in Ui, so
θi − α is holomorphic on Ui and hence has a power series expansion around 0.
We can truncate to obtain a (holomorphic) polynomial β with

sup
Ui−1

|(θi − α)− β| < 1

2i
.

Since β is a polynomial, it is holomorphic on Cn. Set θi+1 = α + β on Ui+1.
Then

∂̄θi+1 = ∂̄α = ω in Ui+1 and sup
Ui−1

|θi−1 − θi| <
1

2i
.

Therefore (θj)j≥1 is a Cauchy sequence on each U i−1, so that (θj) converges on
compact subsets. We obtain a θ with ∂̄θ = ω.

For q ≥ 2 we proceed similarly. Take α ∈ Ω0,q−1(∆) with ∂̄α = ω on Ui+1

(e.g. α = θi+1 ), so that ∂̄(θi − α) = 0 on Ui. Since θi − α ∈ Z0,q−1(∆), the
inductive hypothesis implies that there exists a ψ ∈ Ω0,q−2(∆) with ∂̄ψ = θi−α
in Ui−1. Set θi+1 = α+ ∂̄ψ. Then ∂̄θi+1 = ∂̄α = ω in Ui and θi+1 = θi on Ui−1.
It follows that the θi converge uniformly on compact sets.

Using annuli and Laurent series expansions one can show similarly that

Hp,q

∂̄

(
(∆∗)k ×∆l

)
= 0 ∀q ≥ 1, p ≥ 0,

where ∆∗ is the punctured disk in C. This is, however, false for ∆2\{pt}:
Example 1.6.7. We shall show that dimH0,1

∂̄
(C2\{0}) = ∞. Observe that

C2\{0} is homotopy equivalent to S3, so this example shows that the Dolbeault
cohomology is no a topological invariant, unlike the de Rham cohomology6.
Let

U1 = {z1 6= 0} = C∗ × C and U2 = {z2 6= 0} = C× C∗,

so that C2\{0} = U1 ∪ U2 and U1 ∩ U2 = C∗ × C∗. Let λ1, λ2 be a partition of
unity subordinate to {U1, U2} and let f be a holomorphic function on U1 ∩ U2.
Then g1 = λ2f is a smooth function on U1 and g2 = −λ1f is a smooth function

6Actually, already Remark 1.6.4 shows this.
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on U2. On U1 ∩ U2 we have f = g1 − g2, so that ∂̄(g1 − g2) = ∂̄f = 0 and we
can define a (0, 1)-form on C2\{0} by

ω =

{
∂̄g1 = f∂̄λ2 on U1

∂̄g2 = −f∂̄λ1 on U2.

Clearly ∂̄ω = 0. Suppose that ω = ∂̄h for some h ∈ C∞(C2\{0}). Then
∂̄(g1 − h) = 0 on U1 and ∂̄(g2 − h) = 0 on U2. Hence (g1 − h) is holomorphic
on U1 and (g2− h) is holomorphic on U2. But then f = (λ1 + λ2)f = g1− g2 =
(g1 − h)− (g2 − h), which means that f = u1 + u2, where u1 is holomorphic on
U1 and u2 is holomorphic on U2. Consider the Laurent series of u1 and u2:

u1 =
∑
j≥0
i∈Z

α1
ijz

i
1z
j
2 u2 =

∑
i≥0
j∈Z

α2
ijz

i
1z
j
2,

and observe that the sum u1 + u2 does not have any terms of the form z−m1 z−n2

with m,n > 0. Therefore the ∂̄-closed form ω defined by f = z−m1 z−n2 is not
∂̄-exact7.

This example shows that usually there is no relation between the Dolbeaut
and the de Rham cohomology groups. Nor should there be: solving the equation
dα = β is very different from solving ∂̄α = β. We shall see later a true miracle:
for projective manifolds these two cohomology theories are very closely related.

Further reading:
There is an important class of complex manifolds with trivial Dolbeault
cohomology: the so-called Stein manifolds. These are biholomorphic to
complex submanifolds of CN , and are, in a sense, an exact opposite of compact
complex manifolds: they have plenty of global holomorphic functions. You can
read up on the definition and basic properties of Stein manifolds (but not yet
on their Dolbeault cohomology) in §I.6 of Demailly’s book “Complex Analytic
and Differential Geometry”, freely available online at:
https:

//www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

7A form is called ∂̄-exact if it belongs to Im ∂̄.

https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf


Chapter 2

Vector bundles and sheaves

2.1 Complex and holomorphic vector bundles

Let M be a smooth manifold. A (smooth) complex vector bundle of rank k
on M consists of a family {Ex}x∈M of k-dimensional complex vector spaces
parametrised by M , together with a C∞-manifold structure on

E =
⊔
x∈M

Ex

such that

1) the projection π : E →M , π(Ex) = {x}, is C∞ and

2) each point x0 ∈ M has an open neighborhood U, such that there exists a
diffeomorphism

ϕU : π−1(U)→ U × Ck,

which maps the vector space Ex isomorphically1 onto {x} × Ck for each
x ∈ U .

The map ϕU is called a trivialisation of E over U . The vector spaces Ex are
called the fibres of E. A vector bundle of rank 1 is called a line bundle.

Examples 2.1.1. (i) The complexified tangent bundle of a smooth manifold;
(ii) if M is almost complex, then T 1,0M,T 0,1M,Λp,qM , etc.

For any pair ϕU , ϕV of local trivialisations, we obtain a C∞-map

gUV : U ∩ V → GL(k,C)

given by

gUV (x) =
(
ϕU ◦ ϕ−1

V

)
|{x}×Ck .

1meaning an isomorphism of vector spaces

27
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These transition functions satisfy

gUV (x)gV U (x) = 1

gUV (x)gVW (x)gWU (x) = 1.

Conversely, given an open cover U = {Uα}α∈I of M and C∞-maps

gαβ : Uα ∩ Uβ → GL(k,C)

satisfying these identities, there exits a unique (up to an isomorphism) complex

vector bundle E
π→M with transition functions {gαβ}:

E =
⊔
x∈M

Uα × Ck/∼,

where

(α, x, v) ∼ (β, y, w)⇐⇒ x = y and v = gαβ(x)w.

Any operation on vector spaces induces an operation on vector bundles by
performing it a each point x ∈M . Thus, given two vector bundles E and F on
M , we can construct:

• the dual bundle E∗

• direct sum of vector bundles E ⊕ F

• tensor product E ⊗ F

• exterior powers
∧r

E

The corresponding transition functions are easy to determine: if E and F have
ranks k and l, and transition functions {gαβ} and {hαβ}, respectively, then the
transition functions of E∗, E ⊕ F,E ⊗ F are:

(
(gαβ)T

)−1
,

(
gαβ 0
0 hαβ

)
∈ GL(Ck ⊕ Cl), gαβ ⊗ hαβ ∈ GL(Ck ⊗ Cl).

An important example is the determinant bundle detE =
∧k

E of E (k =
rankE). It is a line bundle with transition functions det(gαβ)(x) ∈ GL(1,C) '
C∗.

A subbundle F ⊂ E of a vector bundle is a smooth submanifold F of E
such that π−1(x) ∩ F is a (complex) vector subspace for each x ∈ M . This
means that there exists a family of local trivialisations of E, relative to which
the transition functions look as follows

gUV (x) =

(
hUV (x) kUV (x)

0 jUV (x)

)
,
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where hUV are the transition functions for F . Observe that jUV are the transi-
tion functions of the quotient bundle E/F .

A homomorphism between vector bundles E on M and F on N is given by a
C∞-map f : E → F such that f |Ex maps Ex linearly to Ff(x). Observe that we
could define Ker(f) and Im(f), but these will not in general be subbundles of E
or F , since the rank of f |Ex may vary. In fact, it is better not to do this, since a
monomorphism between vector bundles can have a nonzero Ker(f) in this sense.

A vector bundle E on M is called trivial if E is isomorphic to the product
bundle M × Ck.

Given a C∞-map f : M → N and a vector bundle F
π→ N , we define the

pullback bundle f∗F on M by

f∗F = {(x,w) ∈M × F | f(x) = π(w)}, i.e. (f∗F )x = Ff(x).

A section s of a vector bundle E
π→ M is a C∞-map s : M → E such that

s(x) ∈ Ex for all x ∈ M (just like a vector field). The vector space of sections
is denoted by Γ(E).

Observe that trivialising a rank k bundle E over an open subset U ⊂ M
is equivalent to giving k sections s1, . . . , sk, which are linearly independent at
every point of U . Such a collection s1, . . . , sk is called a frame for E over U .

Let now M be a complex manifold.

A holomorphic vector bundle E
π→ M is a complex vector bundle with holo-

morphic transition functions. This implies in particular that E is a complex
manifold and π : E →M is holomorphic.

Examples 2.1.2. 1) The holomorphic tangent bundle TM (' T 1,0M);

2) Λp,0M for p ≥ 1 (but not Λp,qM for q 6= 0). The sections of Λp,0M are
holomorphic p-forms.

3) The line bundle Λn,0M , where n = dimCM , is called the canonical bundle
of M and is denoted by KM . It’s dual K∗M = Λn(T 1,0M) is called the
anti-canonical bundle.

4) The tautological line bundle over CPm is a complex line bundle π : J → CPm,
with the fibre J[z] over [z] ∈ CPm being the line 〈z〉 in Cm+1. Recall the
standard atlas (Ui, ϕi)i=0,...,m of CPm. The corresponding trivialisations of
J is:

ψi : π−1(Ui)→ Ui × C; ψi([z], w) = ([z], wi).

The transition functions are

ψi ◦ ψ−1
j ([z], λ) = ψi

(
[z], λ

z

zj

)
=

(
[z], λ

zi
zj

)
,

so that gij([z]) = zi
zj

. Therefore J is a holomorphic bundle.
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Remark 2.1.3. If E is a holomorphic vector bundle over a complex manifold, we
have to distinguish between its smooth sections and its holomorphic sections.
The space of smooth sections is denoted by Γ(E); the space of holomorphic
sections by H0(M,E) - this notation will be explained somewhat later.

Proposition 2.1.4.
KCPm ' Jm+1,

i.e. the canonical bundle of CPm is isomorphic to the (m+ 1)-th (tensor) power
of the tautological bundle.

Proof. We consider the dual bundle H = J∗, called the hyperplane bundle. The
fibre H[z] consists of linear maps 〈z〉 → C. Recall that

CPm ' Cm+1\{0}/C∗

On Cm+1\{0} we have the (holomorphic) vector fields ∂
∂xi

, i = 0, . . . ,m, where

xi are coordinates on Cm+1. If v0, . . . , vm are linear functionals on Cm+1, then
the vector field

m∑
i=0

vi
∂

∂xi

is C∗-invariant, and so it defines a holomorphic vector field on CPm. It is easy
to see that these vector fields generate T[z]CPm at each [z]. Hence we get a
surjective map between vector bundles

H ⊗ Cm+1 −→ TCPm → 0.

The kernel corresponds to the radial vector field E =
∑
xi

∂
∂xi

on CPm+1 (this

is the vector field on Cm+1 tangent to orbits of C∗, hence inducing 0 in TCPm).
Thus we have an exact2 sequence

0→ C −→ H ⊗ Cm+1 −→ TCPm → 0,

where the C ' CPm × C denotes the trivial line bundle on CPm (generated by
the vector field E). Now observe that for an exact sequence of vector spaces
0 → U → V → W → 0, of dimensions k, n, l respectively, ΛnV ' ΛkU ⊗ ΛlW
(since V ' U ⊕W ). Applying this isomorphism pointwise, we obtain K∗CPm '
Hm+1.

Example 2.1.5 ( CP1). The standard atlas of CP1 ' {[x0, x1];x0, x1 ∈ C} con-
sists of U0 = {[x0, x1];x0 6= 0} and U1 = {[x0, x1];x0 6= 1}. The corresponding
coordinates are ζ = x1/x0 on U0 and ζ̃ = x0/x1 on U1, so that ζ̃ = 1/ζ. The
transition function of the tautological bundle J from U0 to U1 is ζ. The (holo-
morphic) cotangent bundle T ∗P1 is trivialised by sections dζ on U0 and dζ̃ on
U1. Since dζ̃ = d

(
ζ−1

)
= −ζ−2dζ, the transition function for T ∗P1 = KCP1

2A sequence 0 → U
f→ V

g→ W → 0 is called exact, if f is injective, g is surjective, and
Ker g = Im f .
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from U0 to U1 is −ζ2. Changing the sign of the transition function gives an
isomorphic vector bundle, and hence KCP1 ' J2.
CP1 is one of the very few projective manifolds on which vector bundles can

be classified3. The Birkhoff-Grothendieck theorem4 says that any (holomorphic)
vector bundle E on P1 splits into a direct sum of line bundles, i.e.

E ' Hk1 ⊕ · · · ⊕Hkr ,

where H is the hyperplane bundle and r = rank E. Let us see how one may
prove this. The bundle E can be trivialised over U0 and U1 (this is perhaps
not quite obvious yet, but let us assume it). The transition function is then
a holomorphic map U0 ∩ U1 → GL(r,C). In terms of the affine coordinate ζ
introduced above it is a holomorphic map C∗ → GL(r,C). We expand this map
in Laurent series, so that the transition function is an r × r matrix g(ζ, ζ−1)
with entries given by Laurent series and nonvanishing determinant for ζ 6= 0,∞.
This determinant is the transition function for detE, which is a line bundle,
and hence isomorphic to Hn, for some n (this is also something to prove later).
On the other hand, the transition function of Hk1 ⊕ · · · ⊕Hkr is the diagonal
matrix diag(ζ−k1 , . . . , ζ−kr ). Two vector bundles are isomorphic, if there exist
holomorphic changes of trivialisations g0 : U0 → GL(r,C), g1 : U1 → GL(r,C).
Therefore the statement of the Birkhoff-Grothendieck theorem is equivalent to
the following special case of Birkhoff’s factorisation:

An invertible matrix g(ζ, ζ−1) with entries that are Laurent polynomials and
determinant equal to ζn for some n ∈ Z can be factorised as

g1(ζ−1) diag
(
ζ−k1 , . . . , ζ−kr

)
g0(ζ),

where g0 (resp. g1) is holomorphic in ζ (resp. in ζ−1) with constant determi-
nant, and k1, . . . , kr ∈ Z.

Thus the Birkhoff-Grothendieck theorem reduces to this purely algebraic
statement. See “further reading” below for references containing a proof of this.

Example 2.1.6 (Tautological bundle on a Grassmannian). Recall from §1.2 that
the Grassmannian Grk(Cn) parametrises k-dimensional subspaces of Cn. Just
as for CPm (k = 1) we can define a complex vector bundle Uk,n over Grk(Cn)
by attaching to each point the k-dimensional subspace which defines it. Again,
this is a holomorphic vector bundle. It is also a subbundle of the trivial bundle
Cn and we obtain a short exact sequence of vector bundles on Grk(Cn):

0→ Uk,n −→ Cn −→ Qk,n → 0.

Observe that the fibre of the quotient bundle Qk,n at a [W ] ∈ Grk(Cn) is the
quotient vector space Cn/W . In particular, Qk,n has rank n− k.
Recall now the description of Grk(Cn) as the homogenous manifoldGL(n,C)/H,

3The others are elliptic curves, i.e. tori of the form C/Λ, where Λ is a lattice of full rank.
4Equivalent statements were actually proved much earlier by Kronecker and by Dedekind

and Weber.
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where H is the subgroup stabilising S0 = 〈e1, . . . , ek〉. H acts on S0 and Uk,n '(
GL(n,C) × S0

)
/H - just observe that the injection Uk,n → Cn is induced by

GL(n,C)× S0 3 (g, v) 7→ gv. Similarly Qk,n '
(
GL(n,C)× (Cn/S0)

)
/H. Now

consider the (holomorphic) tangent bundle of the Grassmannian. Recall that
TGL(n,C) ' GL(n,C) × gl(n,C) and that the right translations by GL(n,C)
on TGL(n,C) corresponds to the adjoint action on gl(n,C). Denote by m the
subspace complementary to Lie(H) in gl(n,C), i.e.

m =

 0 0

∗ 0

 }
k}
n− k

︸︷︷︸
k

︸︷︷︸
n−k

Then TGrk(Cn) '
(
GL(n,C)×m

)
/H. On the other hand m ' S∗0⊗(Cn/S0)

(linear homomorphisms from S0 to Cn/S0). Taken together, this shows that

TGrk(Cn) ' U∗k,n ⊗Qk,n.

Remark 2.1.7. Uk,n is also called the universal bundle, since every complex
vector bundle of rank k over a compact manifold M is the pullback of Uk,n with
respect to a smooth map f : M → Grk(Cn) for some n large enough.

Further reading:

i) For a proof of the Birkhoff-Grothendieck theorem see:
M. Hazewinkel and C.F. Martin, A short elementary proof of
Grothendieck’s theorem on algebraic vector bundles over the projective
line, Journal of Pure and Applied Algebra 25 (1982), 207–211.
Note that this paper proves the factorisation mentioned in Example 2.1.5
only for Laurent polynomials, so for algebraic vector bundles. This is
equivalent to the classification of holomorphic vector bundles, due to a
fundamental result, called GAGA5, which states that on projective
manifolds “holomorphic”=“algebraic”.

ii) Birkhoff’s factorisation and its generalisations are a huge area by
themselves with close links to loop groups, Kac-Moody algebras,
integrable systems, operator theory, and more. For a very down to earth
approach, take a look at the book “Factorization of matrix functions and
singular integral operators” by K. Clancey and I. Gohberg (Springer
1981).

iii) For vector bundles on higher dimensional projective spaces, the book
“Vector bundles on complex projective spaces” by Okonek, Schneider,
and Spindler (Birkhäuser 1980) is still a very valuable reference. It will
be, however, easier to read once we cover sheaves.

5J.-P. Serre, Géometrie algébrique et géometrie analytique, Annales Inst. Fourier 6 (1956),
1–42
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iv) Grassmannians are a special case of the so-called flag manifolds. A brief
introduction (with necessary references) may be found in §3.1 of “Lie
group actions in complex analysis” by D.N. Akhiezer (Vieweg 1995). It
does require a background in Lie theory, though.

Vector bundles on flag manifolds have many applications. One of the
most important is a geometric construction of finite-dimensional
representations of complex semisimple Lie groups; see chapter 4 of the
same book (again, if you are not familiar with sheaves, better wait a
week or so).

2.2 Pseudoholomorphic structures on complex
vector bundles

Let E be a complex vector bundle over an almost complex manifold M . For
every p, q we consider the vector bundle

Λp,q(E) = Λp,qM ⊗ E

and denote the space of its sections by Ωp,q(E) - these are called E-valued
differential forms of type (p, q). If we choose a local trivialisation of E, i.e. a
local frame (e1 . . . , ek), then σ ∈ Ωp,q(E) can be written in this trivialisation as

σ = (ω1, . . . , ωk) =

k∑
i=1

ωi ⊗ ei,

where ωi are local (p, q)-forms on M .

Suppose now that M is complex and E is holomorphic. Let (ei) be a holo-
morphic frame. It turns out that the operator

∂̄ : Ωp,q(E)→ Ωp,q+1(E)

(ω1, . . . , ωk) 7−→ (∂̄ω1, . . . , ∂̄ωk)

is well defined, i.e. it does not depend on the trivialisation. Indeed, if (e′1, . . . , e
′
k)

is another holomorphic frame with ei =
k∑
j=1

gije
′
j , where the gij are holomorphic,

then

σ =

k∑
i=1

ωi ⊗ ei =

k∑
j=1

(
k∑
i=1

gijωi

)
e′j .

Hence in the new frame

∂̄σ =

k∑
j=1

∂̄

(
k∑
i=1

gijωi

)
e′j =

k∑
i,j=1

(gij ∂̄ωi)⊗ e′j =

k∑
i=1

(∂̄ωi)⊗ ei.
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Observe now that ∂̄ satisfies ∂̄2 = 0 and the Leibniz rule

∂̄(ω ∧ σ) = ∂̄ω ∧ σ + (−1)r+sω ∧ ∂̄σ, ω ∈ Ωr,s(M), σ ∈ Ωp,q(E).

The existence of such a natural operator ∂̄ on E-valued forms is a remarkable
property of holomorphic vector bundles. In fact, it characterises holomorphic
vector bundles among complex vector bundles, as we shall shortly see.

Definition 2.2.1. Let E be a complex vector bundle on a complex manifold M .
An operator

∂̄ : Ωp,q(E)→ Ωp,q+1(E)

satisfying the Leibniz rule is called a pseudo-holomorphic structure on E. If, in
addition, ∂̄2 = 0, then ∂̄ is called a holomorphic structure6. A section s of a
pseudo-holomorphic vector bundle (E, ∂̄) is called ∂̄-holomorphic if ∂̄s = 0.

Remark 2.2.2. The Leibniz rule implies that ∂̄ is determined by its action ∂̄ :
Γ(E)→ Ω0,1(E) on Γ(E) = Ω0,0(E).

Theorem 2.2.3. A complex vector bundle E is holomorphic if and only if it
admits a holomorphic structure ∂̄.

Proof. The idea is to use ∂̄ to define an almost complex structure J on E, linear
on fibres, so that the projection E

π→ M is an almost complex map. Then we
shall show that ∂̄2 = 0 if and only if J is integrable.

Lemma 2.2.4. A pseudo-holomorphic vector bundle (E, ∂̄) of rank k is holo-
morphic if and only if every point of M has a neighbourhood with a ∂̄-holomorphic
frame.

Remark 2.2.5. Compare with lemma 1.5.13.

Proof. If E is holomorphic, then ∂̄-holomorphic is the same as holomorphic in
the usual sense, so ∂̄-holomorphic frames exist. Conversely, suppose that ∂̄-
holomorphic frames exist and let e, e′ be two such frames on U,U ′. On U ∩ U ′
we can write e′i =

∑
gijej and then, using the Leibniz rule,

0 = ∂̄e′i=

k∑
j=1

∂̄gijej +

k∑
j=1

gij ∂̄ej =

k∑
j=1

∂̄gijej .

Hence ∂̄gij = 0, and therefore the gij are holomorphic transition functions.

Proof of Theorem 2.2.3. The ”only if” part has been already shown. Suppose
that E has a holomorphic structure ∂̄. We need to show that there exists a ∂̄-
holomorphic frame around each x ∈M . Let (σ1, . . . , σk) be an arbitrary smooth
local frame around x and define local (0, 1)-forms τij by

∂̄σi =

k∑
j=1

τij ⊗ σj .

6Or a Dolbeault operator.
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The assumption ∂̄2 = 0 yields

0 = ∂̄2σi =

k∑
j=1

∂̄τij ⊗ σj −
k∑

j,l=1

τil ∧ τlj ⊗ σj .

Hence

∂̄τij =

k∑
l=1

τil ∧ τlj ∀i, j = 1, . . . , k.

We seek a ∂̄-holomorphic frame (e1, . . . , ek). It can be written as ei =
k∑
j=1

fijσj

for some local functions fij . Then

0 = ∂̄ei =

k∑
j=1

∂̄fij⊗σj+
k∑
j=1

fij ∂̄σj =

k∑
j=1

(
∂̄fij +

k∑
l=1

filτlj

)
⊗σj , i = 1, . . . , k.

We can write this as an equation on matrices f = (fij), τ = (τij):

∂̄f + f · τ = 0. (2.2.1)

This is the equation we need to solve for f .
We may suppose that we are on an open subset U of Cm with holomorphic

coordinates zα and E|U ' U × Ck = Y with coordinates w1, . . . , wk on Ck.
Consider the subbundle T of Λ1Y ⊗ C (the complexified cotangent bundle)
generated by 1-forms

{
dzα, dwi −

k∑
l=1

τilwl

}
l≤α≤m
1≤i≤k

.

Let T ′ be defined the same way, but with everything conjugated. Then Λ1Y ⊗
C ' T ⊕ T ′, and setting J = i on T , J = −i on T ′, defines an almost complex
structure on Y such that Λ1,0Y = T . We claim that this almost complex
structure is integrable. Owing to Proposition 1.5.4 this is equivalent to

dΩ1,0 ⊂ Ω2,0 ⊕ Ω1,1, i.e. d (Γ(T )) ⊂ Γ
(
T ∧ Ω1

C(Y )
)
.

Clearly d(dzα) = 0 and

d

(
dwi −

k∑
l=1

τilwl

)
= −

k∑
l=1

(∂τil)wl −
k∑
l=1

(∂̄τil)wl +

k∑
l=1

τil ∧ dwl

= −
k∑
l=1

(∂τil)wl −
k∑

s,l=1

(τis ∧ τsl)wl +

k∑
l=1

τil ∧ dwl

= −
k∑
l=1

(∂τil)wl +

k∑
s=1

τis ∧

(
dws −

k∑
l=1

τslwl

)
.
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The terms in the second sum clearly belong to Γ
(
T ∧ Ω1

C(Y )
)
. The terms in

the first sum, (∂τil)wl, are forms of type (1, 1) on U , and hence also belong
to Γ

(
T ∧ Ω1

C(Y )
)
, since dzα ∈ Γ(T ). Therefore the almost complex structure

is integrable, and we have local complex coordinates zα, ui, α = 1, . . . , n, i =
1, . . . , k, in some neighbourhood of (x, 0) in U × Ck. In particular dui ∈ Γ(T ),
i.e.

dui =

k∑
j=1

Fij

(
dwj −

k∑
s=1

τjsws

)
+

n∑
α=1

Giαdzα

for some smooth functions Fij , Giα. Taking the exterior derivative of both sides
gives

0 =

k∑
j=1

dFij∧

(
dwj −

k∑
s=1

τjsws

)
+

k∑
j,s=1

Fij (−dτjsws + τjs ∧ dws)+
n∑
α=1

dGiα∧dzα.

If we now set w1, . . . , wk = 0, then

0 =

k∑
j=1

dFij(z, 0) ∧ dwj +

k∑
j=1

Fij(z, 0)

k∑
s=1

τjs ∧ dws +

n∑
α=1

dGi,α(z, 0) ∧ dzα =

=

k∑
j=1

(
dFij(z, 0) +

k∑
l=1

Fil(z, 0)τlj

)
∧ dwj +

n∑
α=1

dGiα(z, 0) ∧ dzα.

Consider the part of this expression which lies in Λ0,1(U)⊗ Λ1,0(Ck); it is:

k∑
j=1

(
∂̄Fij(z, 0) +

k∑
l=1

Fil(z, 0)τlj

)
∧ dwj

which means that

∂̄Fij(z, 0) +

k∑
l=1

Fil(z, 0)τlj = 0 ∀i, j.

Therefore fij(z) = Fij(z, 0) is a solution of (2.2.1).

Example 2.2.6 (Holomorphic structures on the trivial line bundle over an elliptic
curve). Let M be a compact 1-dimensional complex manifold diffeomorphic to
the 2-dimensional torus S1 × S1. Such a complex manifold is called an elliptic
curve and arises as the quotient C/Λ by a lattice Λ = {mω1 + nω2; m,n ∈ Z},
where ω1, ω2 are independent over R. Consider the trivial complex line bundle
E = M ×C over M . We want to consider possible holomorphic structures ∂̄ on
E. As observed in Remark 2.2.2, we only have to define ∂̄ : Γ(E) → Ω0,1(E).
Since Γ(E) ' C∞(M), its elements are Λ-periodic smooth functions on C. On
C, a pseudoholomorphic structure is given simply by ∂̄f+B(z, z̄)fdz̄, where ∂̄ is
the usual Dolbeault operator on C (i.e. ∂̄f = ∂f

dz̄ dz̄), and B is a smooth function.
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Since this is supposed to define a pseudoholomorphic structure on M , B must
be Λ-periodic. Since dimM = 1, the condition ∂̄2 = 0 is trivially satisfied, and
therefore any such B defines a holomorphic structure on E 'M × C via:

∂̄Bf = ∂̄f +Bfdz̄.

The question is when two such holomorphic structures are isomorphic, i.e. when
are the corresponding holomorphic line bundles L(B) isomorphic? Observe that
L1 ' L2 is equivalent to L1 ⊗ L∗2 ' OM , where OM denotes the trivial holo-
morphic line bundle on M . In addition, if L1 = L(B1), L2 = L(B2), then
L1 ⊗ L∗2 = L(B1 − B2). So we only need determine B such that L(B) is
holomorphically trivial. This is equivalent to L(B) having a global holomor-
phic section which does not vanish anywhere (i.e. a global holomorphic frame).
Therefore we want to determine all B such that there exists a Λ-periodic and
nonvanishing smooth function f on C, which satisfies ∂̄f +Bfdz̄ = 0.

First of all, I claim that if B(0) = 0, then such an f exists. Indeed, using
Fourier series, we can then find a Λ-periodic function F such that ∂F

∂z̄ = B(z, z̄).
The function f = e−F is then nonvanishing and ∂̄B-holomorphic, and, hence,
L(B) ' OM .

Therefore we only need to consider the case B = const. The general solution
to the equation ∂̄f +Bfdz̄ = 0 is then:

f(z, z̄) = e−Bz̄g(z),

where g is holomorphic. Since f is Λ-periodic, g satisfies

g(z +mω1 + nω2) = eB(mω1+nω2)g(z), ∀m,n ∈ Z.

Moreover g is never zero, and hence, owing to the Weierstraß factorisation the-
orem, g(z) = eh(z) for an entire function h(z), which satisfies

h(z +mω1 + nω2) = h(z) +B(mω1 + nω2) mod 2πiZ, ∀m,n ∈ Z.

We may assume that h(0) = 0 (i.e. f(0) = 1). Then h(z)/z is an entire function
with bounded real part, hence constant. Therefore h(z) = −Az, A ∈ C, and

m(Aω1 +Bω1) + n(Aω2 +Bω2) ∈ 2πiZ, ∀m,n ∈ Z,

which means that Aω1 + Bω1 ∈ 2πiZ and Aω2 + Bω2 ∈ 2πiZ. Solving this
linear system finally gives

B = 2πi(ω1ω2 − ω1ω2)−1(kω1 + lω2),

for some k, l ∈ Z. Thus we have shown that holomorphic line bundles on M ,
which are topologically trivial, are parametrised by C/ρΛ, where ρ = 2πi(ω1ω2−
ω1ω2)−1. Since rescaling the lattice corresponds to rescaling the coordinate z,
C/ρΛ ' C/Λ, i.e. these line bundles are parametrised by M itself.
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Remark 2.2.7. Let E be a holomorphic vector bundle over a complex manifold
M , and let ∂̄ : Ωp,q(E) → Ωp,q+1(E) be the corresponding holomorphic struc-
ture. Since ∂̄2 = 0, we can define Dolbeault cohomology groups Hp,q

∂̄
(M,E) of

E in the usual way, i.e. as Ker ∂̄/ Im ∂̄. Observe that if E is a trivial bundle of
rank k, then Hp,q

∂̄
(M,E) ' Hp,q

∂̄
(M)⊗Ck. Observe also that Hp,0

∂̄
(M,E) is the

vector space of global holomorphic E-valued p-forms; in particular, H0,0

∂̄
(M,E)

is the vector space of holomorphic sections of E. Next week we shall see a
different approach to these cohomology groups.

Further reading:
Elliptic curves is a huge area and the literature is vast. My favourite
introduction to the subject is: H. McKean and V. Moll, “Elliptic Curves:
Function Theory, Geometry, Arithmetic” (CUP 1999).

2.3 Sheaves

Sheaf theory is an extremely useful technique for keeping track of local data
and for passing (or identifying obstructions to passing) from local to global. It
may seem somewhat abstract at the beginning, but it is, in fact, very natural.
You actually know several sheaves and even use them: whenever you make an
argument using an open neighborhood and continuous/differentiable/smooth
maps on it, you are basically using an appropriate sheaf. The point of the
theory is to extract the properties common to all such situations.

Let X be a topological space.

Definition 2.3.1. A presheaf F of (abelian) groups (resp. sets, rings, vector
spaces etc.) consists of a group (resp. a set, ring, vector space etc.) F(U) for
every open subset U ⊂ X, together with restriction homomorphisms

rUV : F(U)→ F(V )

for every inclusion of open sets V ⊂ U , which satisfy:

(1) rUU is the identity on F(U);

(2) rVW ◦ rUV = rUW for any W ⊂ V ⊂ U .

A basic example of a presheaf is the presheaf of continuous functions, i.e.
F(U) = {continuous functions on U}. Similarly, we have the presheaf of bounded
continuous functions, and if X has aditional structure, e.g. smooth or holomor-
phic, we have presheaves of smooth or holomorphic functions. The restriction
maps are exactly what the name says: they are restrictions of functions to a
smaller subset. Observe that all of these are presheaves of (commutative) alge-
bras.

Similarly, if E is a (topological) vector bundle on X, we have the presheaf of
continuous sections of E. Because of the fundamental nature of this example,
elements of F(U), for an arbitrary presheaf F , are called sections over U . We
shall write s|V for rUV (s).
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Definition 2.3.2. A presheaf F is a sheaf if for every open set U and an open
cover {Ui}i∈I of U the following two conditions hold:

(i) if s, t ∈ F(U) and s|Ui = t|Ui ∀i ∈ I, then s = t;

(ii) if si ∈ F(Ui), i ∈ I, satisfy si|Ui∩Uj = sj |Ui∩Uj whenever Ui∩Uj 6= ∅, then
there exists an s ∈ F(U) such that s|Ui = si for all i ∈ I.

The first property says that a section is determined by its restrictions to
arbitrarily small open subsets (locality). The second property means that we can
glue local sections into a global one, as long as the obvious necessary condition
is satisfied.

Examples 2.3.3. 1) The presheaf of continuous functions is a sheaf, denoted by
C0 (i.e. to each open U we attach C0(U)). Similarly, on a smooth manifolds,
we have sheaves Ck, k ∈ N, and C∞ of continuously differentiable or smooth
functions. Observe that the presheaf of bounded continuous functions is not
necessarily a sheaf: the gluing property will fail, unless X is compact.

2) Sheaves of locally constant Z-, R-, or C-valued functions.

3) Sheaf Ωp of smooth p-forms on a smooth manifold.

4) Sheaf Γ(E) of smooth sections of a (real or complex) vector bundle on a
manifold X.

Our main object of interest will be sheaves specific to complex manifolds:

O = sheaf of holomorphic functions

O∗ = sheaf of nowhere vanishing holomorphic functions

Ωp,q = sheaf of forms of type (p, q)

Hp,0 = sheaf of holomorphic p-forms

Observe that O is a sheaf of algebras, but O∗ is only a sheaf of abelian groups
(with respect to product of functions).

Morphism, kernels, cokernels, etc.

From now on we shall assume that our sheaves are always sheaves of (at least)
abelian groups. This includes sheaves of vector spaces, commutative rings, etc.

Definition 2.3.4. A morphism α : F → G between (pre-) sheaves on X consists
of homomorphisms αU : F(U) → G(U) for all open subsets U ⊂ X such that
the following diagram commutes for all open inclusions V⊂U :

F(U)
αU−→ G(U)yrUV yrUV

F(V )
αV−→ G(V )
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Definition 2.3.5. The kernel of the morphism α : F → G is the sheaf Ker(α)
given by

Ker(α)(U) = Ker
(
αU : F(U)→ G(U)

)
.

It is easy to check that this assignment does, in fact, define a sheaf. The
cokernel is harder. If we set, similarly,

Coker(α)(U) = G(U)/αU (F(U))

then we obtain a presheaf, but, as the following example shows, not necessarily
a sheaf.

Example 2.3.6. Let X = C\{0} and consider the morphism of sheaves exp :
O → O∗, defined by O(U) 3 f 7→ e2πif ∈ O∗(U). The function z ∈ O∗(C\{0})
is not in the image of exp, since one cannot define the logarithm on C\{0}, but
its restriction to any contractible open set U ⊂ C\{0} is in the image of O(U).
Therefore z defines a nonzero element of Coker(exp)(C\{0}), but its restriction
to every contractible U is 0 in Coker(exp)(U), which contradicts property (i) of
the definition of a sheaf.

Instead, we define an element of Coker(α)(U) to be a collection {(Ui, si)},
where {Ui} is an open cover of U and si ∈ G(Ui), such that

si|Ui∩Uj − sj |Ui∩Uj ∈ Im(αUi∩Uj ) whenever Ui ∩ Uj 6= ∅.

We identify {(Ui, si)} and {(U ′i , s′i)} if for any p ∈ Ui ∩ U ′j there exists an open
set V with p ∈ V ⊂ Ui ∩ U ′j such that

si|V − s′j |V ∈ Im(αV ).

Observe that with this definition, z in the above example is equal to 0 in
Coker(exp)(C\{0}). We have made z satisfy condition (i) by localising it.

Remark 2.3.7. There is an analogous general procedure, called sheafification
which turns any presheaf into a sheaf. Essentialy, it throws away sections which
do not satisfy (i) and it adds sections which are missing in (ii).

Definition 2.3.8. A (short) sequence of sheaf morphisms

0→ E α−→ F β−→ G → 0

is exact if E = Ker(β) and G = Coker(α).

We say then that E is a subsheaf of F and G is the quotient sheaf of F by
E , denoted G = F/E . Observe that, given the definition of the cokernel sheaf,
the condition G = Coker(α) means that for any section s ∈ G(U) and p ∈ U ,
there exists an open neighbourhood V ⊂ U of p and a t ∈ F(V ) such that
βV (t) = s|V . In other words, any section of G is locally the image of a section
of F .
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Example 2.3.9. On any complex manifold, the sequence

0→ Z j−→ O exp−→ O∗ → 0

is exact (here j is the inclusion and exp(f) = e2πif ). The meaning of exact-
ness is: ”given a nonvanishing holomorphic function, we can locally take its
logarithm”. This sequence is called the exponential sheaf sequence.

More generally, we say that a (long) sequence of sheaf morphisms

· · · −→ Fn
αn−→ Fn+1

αn+1−→ Fn+2 −→ . . .

is exact if αn+1 ◦ αn = 0 and

0→ Ker(αn)
i−→ Fn

αn−→ Ker(αn+1)→ 0

is exact for every n.

Example 2.3.10. 1) On any smooth manifold we have a sequence

0 −→ R −→ C∞
d−→ Ω1 d−→ Ω2 −→ . . .

of sheaves (real-valued functions and forms). It is exact. Indeed, d2 = 0 and
at every stage

0 −→ Ker(dn) −→ Ωn
dn−→ Ker(dn+1)→ 0

is exact, since the Poincaré lemma means that locally any form in Ker(dn+1)
is in Im(dn).

2) Similarly, on a complex manifold, the ∂̄-Poincaré lemma implies that the
sequence

0 −→ Hp,0 j−→ Ωp,0
∂̄−→ Ωp,1

∂̄−→ Ωp,2
∂̄−→ . . .

is exact, where Hp,0 denotes the sheaf of holomorphic p-forms.

Vector bundles and locally free sheaves

Let M be a smooth or complex manifold, and denote by S its structure sheaf,
i.e. the sheaf C∞ of smooth functions or the sheaf O of holomorphic functions.
It is a sheaf of algebras. Let E be a vector bundle over M (in the respective
category), and denote by E its sheaf of sections (respectively smooth or holo-
morphic). Then, for every open set U , E(U) is a module over S(U) (sections
can be multiplied by functions). Moreover, if U is small enough so that E|U can
be trivialised, then E(U) ' S(U)⊕k (k = rankE): any section can be written
as
∑
fiei, where (ei) is a local frame for E. In other words the module E(U) is

free. One says that the sheaf of modules7 E(U) is locally free.

7A sheaf M is a sheaf of modules if M(U) is a module over S(U) for every open U , and
the restriction maps rUV for S and M are compatible, i.e. rUV (fm) = rUV (f) rUV (m).



42 CHAPTER 2. VECTOR BUNDLES AND SHEAVES

Conversely, suppose that M is connected and that we are given a locally free
sheaf of modules E(U) on M . This means that we have an open cover (Uα) of M
and isomorphisms gα : E(Uα) ' S(Uα)⊕k. For any α, β such that Uα ∩ Uβ 6= ∅,
we obtain (after restricting) an isomorphism

gαβ = gα ◦ g−1
β : S(Uα ∩ Uβ)⊕k −→ S(Uα ∩ Uβ)⊕k.

This is nothing else than an invertible matrix of smooth or holomorphic func-
tions on Uα∩Uβ . These maps gαβ satisfy the compatibility conditions described
at the beginning of §2.1 (p.27) and therefore define a vector bundle E on M .

It should be clear that these two constructions are inverse to each other (up
to isomorphisms) and, consequently:

vector bundles = locally free sheaves of modules.

Example 2.3.11. Let M be a manifold and D a submanifold. Any vector bundle
E on D can be extended, as a sheaf, to M , by setting Ẽ(U) = E(U ∩ D) if
U ∩D 6= ∅, and Ẽ(U) = 0 otherwise (with obvious restriction maps). This is a
sheaf of modules on M which is not locally free.

Remark 2.3.12. The above equivalence between vector bundles and locally free
sheaves is an equivalence of categories, so it is also an equivalence between
morphisms. Be careful, however, about the meaning of an injective morphism
under this equivalence. For example, consider the map χ from the trivial line
bundle M ×C to itself, given by (m, z) 7→ (m,h(m)z), where h is a holomorphic
function vanishing on D  M . This is of course not injective on fibres over
points of D, but it is a monomorphism in the category of vector bundles, i.e.
if g1, g2 : E → M × C are two vector bundle morphisms from a vector bundle
π : E → X such that f ◦ g1 = f ◦ g2, then g1 = g2. Observe that χ is clearly
injective as a morphism of corresponding locally free sheaves (the product of a
nonzero local section and a nonzero holomorphic function is nonzero).

Observe also that the cokernel of this monomorphism χ is the sheaf ÕD,
as introduced in the previous example, where OD is the trivial bundle D × C
(assuming that D is a submanifold). Thus we see that the category of vector
bundles (a.k.a. locally free sheaves) does not admit cokernels (nor kernels). In
order to have those, one needs to enlarge the category to include the so-called
coherent sheaves. These are those sheaves of O-modules which arise locally as
cokernels of morphisms between free sheaves.

Further reading:
Books devoted to sheaf theory tend to be very technical. It is better to read
about sheaves in books on algebraic or complex analytic geometry. I
recommend R. Wells’ book from the literature list, or R. Vakil’s online notes,
available at
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf

If you are still sheaf-thirsty after that, then “Lectures on Algebraic Geometry
I” by G. Harder (Springer 2011) is rather good.

http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
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2.4 Čech cohomology

In general, a cohomology theory identifies certain obstructions. The Čech coho-
mology identifies obstructions to patching local sections of a sheaf into a global
one8.

Let X be a topological space and F a sheaf (always of abelian groups) on
X. Let U = {Uα}α∈A be an open cover of X. We write

Uα0...αp = Uα0
∩ · · · ∩ Uαp ,

and define

C0(U ,F) =
∏
α∈A
F(Uα)

C1(U ,F) =
∏

α6=β∈A

F(Uαβ)

...

Cp(U ,F) =
∏

α0 6=α1 6=···6=αp∈A

F(Uα0α1...αp).

An element s = (sI) ∈ Cp(U ,F) is called a p-cochain. We define the coboundary
map

δ : Cp(U ,F)→ Cp+1(U ,F)

by

(δs)α0...αp+1 =

p+1∑
j=0

(−1)jsα0...α̂j ...αp |Uα0...αp+1
.

In particular if s = {sU} ∈ C0(U ,F), then

(δs)UV = (sU )|U∩V − (sV )|U∩V
and if s = (sUV ) ∈ C1(U ,F), then

(δs)UVW = (sUV )|U∩V ∩W − (sUW )|U∩V ∩W + (sVW )|U∩V ∩W .

Lemma 2.4.1. The composition δ ◦ δ : Cp(U ,F) → Cp+2(U ,F) is the zero
map.

Proof.

δ ◦ δ(s)α0...αp+2
=
∑
i,j

(−1)j−1(−1)i︸ ︷︷ ︸
i deleted first

+ (−1)i(−1)j︸ ︷︷ ︸
j deleted first


︸ ︷︷ ︸

=0

sα0...α̂i...α̂j ...αp+2
= 0

8This is a cop-out: already the first cohomology group does this. It is unclear to me what
the geometric intuition behind higher Čech cohomology groups is.
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A p-cochain s ∈ Cp(U ,F) is called a cocycle if δs = 0, and a coboundary if
s = δt for some t ∈ Cp−1(U ,F). We set

Zp(U ,F) = Ker(δ) ⊂ Cp(U ,F) and Ȟp(U ,F) =
Zp(U ,F)

δ(Cp−1(U ,F))
.

Thus Ȟp(U ,F) is the p-th cohomology group of the complex

0 −→ C0(U ,F)
δ−→ C1(U ,F)

δ−→ C2(U ,F)
δ−→ . . . , (2.4.1)

and it depends on the choice of an open cover U .

Example 2.4.2. Let X = P1 and F = O. We have the open cover U0 = {[z0, z1] |
z0 6= 0}, U1 = {[z0, z1] | z1 6= 0}. Both are isomorphic to C and the intersection
is C∗. The map

δ : C0(U ,F) = O(U)⊕O(V )→ C1(U ,F) = O(U ∩ V )

δ(f, g) = f(z)− g
(

1

z

)
.

We can expand f as a power series in z, g as a power series in 1
z , and hence

δ(f, g) = 0⇐⇒ f = g = const.

Therefore Ȟ0(U ,O) = C. Now observe that the image of δ consists of all
holomorphic functions on C∗: take a Laurent series expansion and set

f(z) = nonnegative powers of z

−g
(

1

z

)
= negative powers of z.

Hence Ȟ1(U ,O) = 0 (and, of course, that is all, since the complex (2.4.1)
terminates at p = 1).

Now recall that, given two covers U = {Uα}α∈A and U ′ = {U ′β}β∈B of X,
we say that U ′ is a refinement of U if for every β ∈ B there exists α ∈ A such
that U ′β ⊂ Uα. We write then U ′ ≤ U . For each β choose α as above and denote
it by ϕ(β); this defines a function ϕ : B → A. We then obtain a map

ρϕ : Cp(U ,F)→ Cp(U ′,F), ρϕ(s)β0...βp = sϕ(β0)...ϕ(βp)|U ′β0...βp
. (2.4.2)

This commutes with δ, and therefore induces a map on cohomology

ρUU ′ = ρϕ : Ȟp(U ,F)→ Ȟp(U ′,F).

One can check that this does not depend on the choice of ϕ (the maps ρφ and
ρψ for two such choices are chain-homotopic and therefore induce the same map
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on cohomology). We define the p-th Čech cohomology of F on X as the direct
limit9 of the Ȟp(U ,F) as U becomes finer and finer:

Ȟp(X,F) = lim−→
U
Ȟp(U ,F).

This definition is clearly impossible to work with in practice. We need a simple
sufficient condition on a cover U so that

Ȟ(U ,F) = Ȟ(X,F).

In other words the direct limit stabilises at U , and further refinements do not
change anything. Such a condition is provided by

Theorem 2.4.3 (Leray’s Theorem). If a cover U is acyclic for a sheaf F in
the sense that

Ȟp(Ui1 ∩ · · · ∩ Uiq ,F) = 0 ∀p > 0 ∀i1, . . . , iq,

then Ȟ∗(U ,F) = Ȟ∗(X,F).

Such a cover is also called a Leray cover. We shall not prove Leray’s theorem
in full generality, only in those cases where it will be used.

Remark 2.4.4. Observe, directly from the definition, that Ȟ0(X,F) = Ȟ0(U ,F) =
F(X) for any open cover U , i.e. the 0-th Čech cohomology group is the space
of global sections of F . This justifies our notation H0(M,E) for the space of
holomorphic sections of a holomorphic vector bundle.

Remark 2.4.5. The correct definition of sheaf cohomology uses homological alge-
bra and is very difficult to use in computations. Fortunately, Čech cohomology
is isomorphic to sheaf cohomology for paracompact10 spaces.

We shall now introduce the main computational tool in cohomology: the
long exact sequence. Let f : F → G be a morphism of sheaves. This induces a
map Cp(U ,F) → Cp(U ,G) for any open cover U , which commutes with δ, and
therefore induces a map on cohomology

f∗ : Ȟp(X,F) −→ Ȟp(X,G) ∀p.

A fundamental property of sheaf cohomology is:

Theorem 2.4.6. Suppose that

0→ E f−→ F g−→ G → 0

9The direct limit is defined as the quotient of the direct sum over all open covers by an
equivalence relation, where x ∈ Ȟp(U1,F) and y ∈ Ȟp(U2,F) are equivalent, if there exists a
common refinement U ′ such that ρU1U′ (x) = ρU2U′ (y).

10I.e. a Hausdorff topological space such that any open cover admits a locally finite refine-
ment.
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is a short exact sequence of sheaves on a paracompact space X. Then there exist
natural maps

δ∗ : Ȟp(X,G) −→ Ȟp+1(X, E)

such that the following long sequence on cohomology is exact:

· · · −→ Ȟp−1(X,G)
δ∗−→ Ȟp(X, E)

f∗−→ Ȟp(X,F)
g∗−→ Ȟp(X,G)

δ∗−→ . . . .

Proof. The idea behind long exact cohomology sequences is always the same
and it involves “diagram chasing” or the “zig-zag lemma” (recall the proof of
exactness of the Mayer-Vietoris sequence in the de Rham cohomology), provided
we are dealing with a short exact sequence of chain complexes of abelian groups.
Here the problem is that the exactness of a short sequence of sheaves does not
imply exactness of

0→ E(U)
f−→ F(U)

g−→ G(U)→ 0

for an open subset U (recall Example 2.3.6). We need to adapt the arguments
to this situation.

We begin by constructing δ∗. Suppose that s ∈ Ȟp(X,G) is represented by
a cocycle s ∈ Cp(U ,G). We may assume that U = {Uj}j∈J is locally finite. We
can then find a cover V = {Vj}j∈J such that V j ⊂ Uj for all j ∈ J . For every
x ∈ X we choose an open neighbourhood Wx, so that the following conditions
are satisfied:

(i) if x ∈ Uj0...jp , then there exists a section t ∈ F(Wx) such that g(t) =
sj0...jp |Wx

;

(ii) if x ∈ Uj (resp. x ∈ Vj), then Wx ⊂ Uj (resp. Wx ⊂ Vj);

(iii) if Wx ∩ Vj 6= ∅, then Wx ⊂ Uj .

Existence of a Wx satisfying (i) follows from the definition of the cokernel of
a sheaf morphism. We can then ensure (ii) and (iii) for x in some Uj0...jp by
making Wx smaller (since U is locally finite, x belongs to only finitely many
Uj0...jp). For x which do not belong to any Uj0...jp , we only need to ensure (ii)
and (iii) which is easy to do.

The family W = {Wx}x∈X is an open cover of X, and for every x we can
find a ϕ(x) ∈ J such that Wx ⊂ Vj . We consider ρϕ(s) ∈ Cp(W,G), where
ρϕ is the map defined in (2.4.2). I claim that there exists t ∈ Cp(W,F) such
that ρϕ(s) = g(t). Consider Wx0

∩ · · · ∩Wxp . If it is empty, there is nothing
to show. If not, then Wx0

∩Wxi 6= ∅ for i = 1, . . . , p, and since Wxi ⊂ Vϕ(xi),
condition (iii) above implies that Wx0

⊂ Uϕ(xi) for i = 1, . . . , p. Therefore x0 ∈
Uϕ(x0)...ϕ(xp). Property (i) guarantees that there exists a section t ∈ F(Wx0

)
such that g(t) = sϕ(x0)...ϕ(xp) on Wx0 , and therefore also on Wx0 ∩ · · · ∩Wxp .

We have shown that there exists a refinementW ≤ U such that ρϕ(s) = g(t)
for some t ∈ Cp(W,F). But then

g(δt) = δg(t) = δρϕ(s) = ρϕ(δs) = 0.
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Exactness in the middle of the short exact sequence implies now that there is a
u ∈ Cp+1(W, E) such that f(u) = δt. Then

f(δu) = δ(f(u)) = δ2t = 0.

Since f is injective, δu = 0 and we can define δ∗(s) = [u] ∈ Ȟp+1(W, E). Passing
to direct limits defines δ∗(s) ∈ Ȟp+1(X, E).

The proof of exactness of the long sequence follows now the usual lines (as
for the Mayer-Vietoris sequence), as long as we use the existence of a refinement
W ≤ U as above.

The following corollary is useful:

Corollary 2.4.7. Let 0 → E → F → G → 0 be a short exact sequence of
sheaves on a topological space X. If U ⊂ X is a paracompact open subset such
that Ȟ1(U, E) = 0, then 0 → E(U) → F(U) → G(U) → 0 is a short exact
sequence of abelian groups.

Proof. Apply the above theorem to X = U and use the fact that H0(U, E) =
E(U) etc.

In general, the following types of sheaves are of interest on a manifold:

1) locally constant sheaves Z,R,C. These carry topological information. We
shall see shortly that if M is a smooth manifold, then

Ȟ∗(M,R) = H∗dR(M).

2) C∞-sheaves such as the sheaf of smooth functions, Ωp, or Ωp,q on an almost
complex manifold. Their local sections can be expressed locally as n-tuples
of C∞-functions. Their cohomology is trivial (see below).

3) holomorphic sheaves such as O, Hp,0 (holomorphic p-forms), sheaf of holo-
morphic sections of a vector bundle. For these, the Čech cohomology carries
a lot of information.

Let us prove the statement made in 2).

Proposition 2.4.8. Let M be an almost complex manifold. Then

Ȟr(M,Ωp,q) = 0 ∀r > 0.

Proof. Let U = (Uα)α∈A be a locally finite cover with a subordinate partition
of unity (λα)α∈A. For an s ∈ Zr(U ,Ωp,q) define t ∈ Cr−1(U ,Ωp,q) by

tα0...αr−1
=
∑
β∈A

λβsβα0...αr−1
.
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This is well-defined: although sβα0...αr−1 is defined only on Uβ∩Uα0∩· · ·∩Uαr−1 ,
we can extend λβsβα0...αr−1 to Uα0...αr−1 by zero, since supp(λβ) ⊂ Uβ .
One checks then that δt = s. E.g. for r = 1, we have s = (sUV ) and δs = 0
means that sUV − sUW + sVW = 0 on U ∩ V ∩W . Then tU =

∑
V

λV sV U and

(δt)UV = tU − tV =
∑
W

λW sWU −
∑
W

λW sWV =
∑
W

λW sUV =
Σλ=1

sUV .

The argument for higher r is completely analogous, if notationally more com-
plicated.

Remark 2.4.9. Sheaves admitting partitions of unity are called fine, and the
same argument shows that their higher cohomology groups vanish.

Theorem 2.4.10 (Dolbeault theorem). Let M be a complex manifold, and Hp,0
the sheaf of holomorphic p-forms on M . Then

Ȟq(M,Hp,0) = Hp,q

∂̄
(M) ∀q.

Proof. As observed in the previous section, the ∂̄-Poincaré lemma implies that
the sequences

0→ Hp,0 ∂̄−→Ωp,0
∂̄−→ Zp,1

∂̄
→ 0,

...

0→ Zp,q
∂̄

∂̄−→Ωp,q
∂̄−→ Zp,q+1

∂̄
→ 0,

are exact for all q. The associated long exact sequences are:

· · · −→ Ȟr(Ωp,0)
∂̄∗−→ Ȟr(Zp,1

∂̄
)

δ∗−→ Ȟr+1(Hp,0)
∂̄∗→ Ȟr+1(Ωp,0) −→ . . .

...

· · · −→ Ȟr(Ωp,q)
∂̄∗−→ Ȟr(Zp,q+1

∂̄
)

δ∗−→ Ȟr+1(Zp,q
∂̄

)
∂̄∗−→ Ȟr+1(Ωp,q) −→ . . . .

Since Ȟr(Ωp,q) = 0 ∀r > 0, we obtain

Ȟr(Hp,0) ' Ȟr−1(Zp,1
∂̄

) ' Ȟr−2(Zp,2
∂̄

) ' . . .

' Ȟ1(Zp,r−1

∂̄
) ' Ȟ0(Zp,r

∂̄
)/∂̄∗(Ȟ

0(Ωp,r−1)) = Hp,r

∂̄
(M),

where the last equality follows from the fact that Ȟ0 is the space of global
sections of the given sheaf.

Remark 2.4.11. The same argument applied to the first exact sequence in Ex-
ample 2.3.10 proves the de Rham theorem: Ȟ∗(M,R) = H∗dR(M) on any smooth
manifold.
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In Remark 2.2.7 we introduced Dolbeault cohomology groups Hp,q

∂̄
(M,E) of

a holomorphic vector bundle. These have the following sheaf-theoretic interpre-
tation:

Proposition 2.4.12. Let π : E → M be a holomorphic vector bundle on a
complex manifold, and denote by Hp,0(E) the sheaf of E-valued holomorphic
p-forms on M . Then:

Hp,q

∂̄
(M,E) = Ȟq(M,Hp,0(E)) ∀q.

Proof. Identical to the proof of Dolbeault’s theorem.

As an application of Dolbeault’s theorem we shall prove the Leray theorem
for the sheaf O of holomorphic functions:

Proposition 2.4.13. If {Uα} is a locally finite cover, which is acyclic for O,
then

Ȟp(U ,O) ' Ȟp(M,O) ∀p.

Proof. From the Dolbeault theorem:

H0,r

∂̄
(Uα1

∩ · · · ∩ Uαs) = Ȟr(Uα1
∩ · · · ∩ Uαs ,O) = 0.

This means that that we have a short exact sequence

0→ Z0,r−1

∂̄
(Uα1...αs)

j−→ Ω0,r−1(Uα1...αs)
∂̄−→ Z0,r

∂̄
(Uα1...αs)→ 0.

Since, by assumption, this is true for all multi-intersections, the definition of a
sheaf implies that the exactness holds at the level of cochains:

0→ Cs(U , Z0,r−1

∂̄
) −→ Cs(U ,Ω0,r−1) −→ Cs(U , Z0,r

∂̄
)→ 0.

In the associated long exact cohomology sequence the middle terms vanish for
all s > 0, by a partition of unity argument. Therefore

Ȟs(U , Z0,r

∂̄
) ' Ȟs+1(U , Z0,r−1

∂̄
) ∀r ≥ 0, s > 0.

It follows:

Ȟp(U ,O) ' Ȟp−1(U , Z0,1

∂̄
) ' Ȟp−2(U , Z0,2

∂̄
) ' · · · ' Ȟ1(U , Z0,p−1

∂̄
)

' H0(U , Z0,p

∂̄
)/∂̄(H0(U ,Ω0,p−1)) = H0,p

∂̄
(M) = Ȟp(M,O),

where the last equality is again due to Dolbeault’s theorem.

Remark 2.4.14. The same argument works for the sheaves Hp,0 of holomorphic
p-forms and the sheaves Hp,0(E) of holomorphic E-valued p-forms.



50 CHAPTER 2. VECTOR BUNDLES AND SHEAVES

Further reading:
At the end of §1.6 I mentioned the so-called Stein manifolds, as an example of
a class of manifolds with trivial Dolbeault cohomology. This follows from a
deep theorem, Cartan’s theorem B, which states that on a Stein manifold (and
even on a Stein space) Ȟp(M,F) = 0 for every coherent sheaf F and all p > 0.
The proof of this is really very complicated, see H. Grauert and R. Remmert,
“Theory of Stein spaces” (Springer 1979).
It is perhaps of interest that the following natural question appears not to
have been answered yet (at least I could not find an answer): does the
vanishing of Hp,q

∂̄
(M) for all p ≥ 0 and q > 0 imply that M is Stein?



Chapter 3

Connections, curvature,
metrics

3.1 Connections and their curvature

Let π : E →M be a complex vector bundle on a smooth manifold M . Sections
of E form a vector space and can, in many ways, be viewed as a generalisation
of smooth functions (which are sections of the trivial bundle M × C). There
is, however, an important difference: there is no canonical way to differentiate
sections, i.e. no linear operator Γ(E)→ Γ(E) which behaves locally like a first
order differential operator. We have to introduce such an operator per hand:

Definition 3.1.1. A connection on a complex vector bundle E
π→ M (over a

smooth manifold M) is a linear map

D : Γ(E)→ Ω1(E)

which satisfies the Leibniz rule

D(fs) = df ⊗ s+ fDs ∀ f ∈ C∞(M), ∀ s ∈ Γ(E).

Observe that for each tangent vector v ∈ TxM we obtain an operator Dv :
Γ(E) → Ex, Dv(s) = (Ds)(v) (evaluation of a 1-form on a tangent vector),
which should be viewed as analogous to directional derivative.

If we choose a local frame e = (e1, . . . , ek) for E over U , then we can write

Dei =

k∑
j=1

ϑij ⊗ ej

for a matrix ϑe = [ϑij ] of 1-forms, called the connection matrix (with respect to

the frame e). The data e and ϑe determine D: for a general section s =
k∑
i=1

fiei

51
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we obtain

Ds =

k∑
i=1

dfi ⊗ ei +

k∑
i=1

fiDei =

k∑
j=1

(
dfj +

k∑
i=1

fiϑij

)
⊗ ej .

If e′ = (e′1, . . . , e
′
k) is another local frame with e′(z) = g(z)e(z), for a transition

function z 7→ g(z) ∈ GL(k,C), then

De′i = D

 k∑
j=1

gijej

 =

k∑
j=1

dgij ⊗ ej +

k∑
j=1

gijDej =

k∑
j=1

dgij ⊗ ej +

k∑
j,k=1

gikϑkj ⊗ ej

=

k∑
j,l=1

(dgij + gilϑlj)⊗ ej =
k∑

j,l,s=1

(dgij + gilϑlj)⊗
(
g−1

)
js
e′s.

In other words, the transformation law for the connection matrix is:

ϑe′ = gϑeg
−1 + dgg−1.

Remark 3.1.2. A connection on a vector bundle E
π→M induces a connection on

any vector bundle which can be obtained from E by linear operations, e.g. E∗,
ΛpE, Hom(E,E), etc. Similarly, given connections on vector bundles E1

π1−→M

and E2
π2−→ M , we obtain a canonical connection on E1 ⊕ E2, E1 ⊗ E2, etc. I

shall leave the details as an exercise (Homework 6).

Remark 3.1.3. Every vector bundle admits a connection by a partition of unity
argument - see Proposition 3.2.5 below. The space of connections on E is acted
upon by the gauge group, i.e. automorphisms of E which preserve fibres. If
g is such an automorphism, then the action is defined by D 7→ Dg, where
Dg(s) = gD(g−1s).

Curvature

We can extend any connection to act on Ωp(E), p ≥ 1, by imposing the Leibniz
rule

D(ω ⊗ s) = dω ⊗ s+ (−1)pω ∧Ds, ∀ω ∈ Ωp(M), ∀ s ∈ Γ(E).

In particular we can consider the operator

D2 = D ◦D : Γ(E)→ Ω2(E).

Unlike D, D2 is linear over functions:

Proposition 3.1.4. D2 is linear over C∞(M), i.e.

D2(fs) = fD2(s) ∀ f ∈ C∞(M), ∀ s ∈ Γ(E).
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Proof.

D2(fs) = D(df ⊗ s+ fDs) = −df ∧Ds+ df ∧Ds︸ ︷︷ ︸
=0

+fD2s = fD2s.

This means that the value D2(s)(x) at a point x ∈M depends only on s(x),
and not on the first derivatives of s. In other words D2 is induced by a bundle
map E → Λ2M ⊗ E, i.e. a section of Λ2M ⊗ Hom(E,E), which is the same as
a Hom(E,E)-valued 2-form RD. RD is called the curvature of the connection.

If e = (e1, . . . , ek) is a local frame for E, then we can represent RD = D2 by
a matrix of 2-forms

D2ei =

k∑
j=1

Θij ⊗ ej .

The matrix Θe = [Θij ] is called the curvature matrix with respect to the frame

e. If e′i =
k∑
j=1

gijej is another frame, then

D2e′i = D2

 k∑
j=1

gijej

 =

k∑
j=1

gijD
2ej =

k∑
j,l=1

gijΘjl ⊗ el =

=

k∑
j,l,s=1

gijΘjl ⊗ (g−1)lse
′
s =

k∑
j,l,s=1

(
gijΘjl(g

−1)ls
)
⊗ e′s,

so that

Θe′ = gΘeg
−1.

We can express the curvature matrix in terms of the connection matrix: since

Dei =
k∑
j=1

ϑijej , we obtain

D2ei = D

 k∑
j=1

ϑijej

 =

k∑
j=1

(
dϑij −

k∑
p=1

ϑip ∧ ϑpj

)
⊗ ej .

We can write this as

Θe = dϑe − ϑe ∧ ϑe, (3.1.1)

where ∧ denotes matrix product with respect to the wedge product (i.e. exactly
what the formula above says). Equations (3.1.1) are called Cartan structure
equations.



54 CHAPTER 3. CONNECTIONS, CURVATURE, METRICS

3.2 Hermitian metrics

Definition 3.2.1. Let E
π→M be a complex vector bundle. A hermitian metric

on E is a smoothly varying hermitian inner product on each fibre Ex (i.e. if e =
(e1, . . . , ek) is a smooth frame for E, then the functions hij(x) = 〈ei(e), ej(x)〉
are C∞). A complex vector bundle equipped with a hermitian metric is called
a hermitian vector bundle.

Example 3.2.2. Recall the tautological bundle JCPn on CPn. Its fibre over z ∈
CPn is just the line 〈z〉 in Cn+1. We can define a hermitian metric on J by
simply restricting the standard hermitian inner product on Cn+1 to 〈z〉.

Definition 3.2.3. Let E
π→ M be a hermitian vector bundle. A connection

D : Γ(E)→ Ω1(E) is called hermitian if it is compatible with the metric, i.e.

d〈s1, s2〉 = 〈Ds1, s2〉+ 〈s1, Ds2〉 ∀ s1, s2 ∈ Γ(E).

Another way of saying this is that the metric is parallel with respect to D
- see Homework 6 for details. If e = (e1, . . . , ek) is a local frame for E and we
put hij = 〈ei, ej〉, then this condition reads

dhij = 〈Dei, ej〉+ 〈ei, Dej〉 =

k∑
p=1

ϑiphpj +

k∑
p=1

ϑjphip ∀ i, j. (3.2.1)

Remark 3.2.4. In a unitary trivialisation (cf. Homework 6), it follows from
(3.2.1) that the connection matrix is skew-hermitian, i.e. ϑij = −ϑji for all i, j.
The same holds then for the curvature matrix.

Proposition 3.2.5. Any vector bundle admits a hermitian metric. Any her-
mitian vector bundle admits a compatible connection.

Proof. Let {Ui}i∈I be a locally finite cover such that each E|Ui is trivial, and
let {λi} be a subordinate partition of unity. On each E|Ui there is a hermitian
metric hi and we set h =

∑
i∈I λihi. For the second statement, let 〈 , 〉 be a

hermitian metric on E. On each E|Ui we can find a hermitian connection Di

(for example with trivial connection matrix in a unitary trivialisation). Then

Ds =
∑
i∈I

Di(λis) =
∑
i∈I

λiDis,

is a connection on E and we check that it is hermitian:

〈Ds, t〉+ 〈s,Dt〉 =
〈∑
i∈I

λiDis, t
〉

+
〈
s,
∑
i∈I

λiDit
〉

=

=
∑
i∈I

λi

(〈
Dis, t

〉
+
〈
s,Dit

〉)
=
∑
i∈I

λid
〈
s, t
〉

= d〈s, t〉.
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Suppose now that M is a complex manifold and E is a holomorphic vector
bundle. We can decompose a connection D : Γ(E)→ Ω1(E) as D = D1,0+D0,1,
where

D1,0 : Γ(E)→ Ω1,0(E) and D0,1 : Γ(E)→ Ω0,1(E).

This much is true on any complex vector bundle over an almost complex man-
ifold. However, on a holomorphic E we already have a differential operator
∂̄ : Γ(E) → Ω0,1(E) - the natural holomorphic structure defined at the be-
ginning of §2.2. We therefore call a connection D compatible with the complex
structure if D0,1 = ∂̄.

Theorem 3.2.6. If E
π→ M is a hermitian holomorphic vector bundle, then

there exists a unique connection D (called the Chern connection) compatible
with both the metric and the complex structure.

Proof. Let e = (e1, . . . , ek) be a local holomorphic frame for E and put hij =
〈ei, ej〉. If D is compatible with the complex structure, then Dei is of type
(1, 0) for each i. Let ϑ be the connection matrix of D with respect to e, i.e.

Dei =
k∑
j=1

ϑij ⊗ ej . It follows that ϑij are of type (1, 0).

On the other hand, if D is compatible with the metric, then we have equation
(3.2.1). Hence, if D is compatible with both complex structure and the metric,
then, after decomposing according to type,

∂hij =

k∑
p=1

ϑiphpj , ∂̄hij =

k∑
p=1

ϑjphip,

or in matrix notation ∂h = ϑh, ∂̄h = hϑ∗. Now just observe that ϑ = (∂h)h−1

is a unique solution to both equations.

Let us discuss the curvature of a Chern connection. Recall formula (3.1.1)
for curvature matrix of a connection D with respect to a frame e:

Θe = dϑe − ϑe ∧ ϑe = dϑe − [ϑe, ϑe].

If D is the Chern connection on a holomorphic hermitian vector bundle and e
is a holomorphic frame, then we have just seen that

ϑe = ∂hh−1, where hij = 〈ei, ej〉.

We now compute:

dϑe = (∂ + ∂̄)ϑe = ∂̄ϑe + ∂(∂hh−1) = ∂̄ϑe − ∂h ∧ (∂h−1)

= ∂̄ϑe + ∂h ∧ h−1∂hh−1 = ∂̄ϑe + ∂hh−1 ∧ ∂hh−1.

Hence
Θe = dϑe − ϑe ∧ ϑe = ∂̄ϑe = ∂̄(∂hh−1). (3.2.2)

In particular the curvature of a Chern connection has type (1, 1).
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Formula (3.2.2) is particularly simple in the case of a line bundle, since then
a local frame is just a local non-vanishing section. If s is such a holomorphic
section and h = 〈s, s〉, then we obtain:

ϑ = ∂ log h, Θ = ∂̄∂ log h. (3.2.3)

Also, since Θ gets conjugated under a change of frame, this has no effect in
the case k = 1, since GL(1,C) is abelian. Therefore Θ is a well-defined (purely
imaginary) global 2-form on M .

Example 3.2.7. Let us compute the curvature of the Chern connection on the
tautological line bundle J on CPn (Example 3.2.2). Recall that J is a subbundle
of the trivial line bundle CPn×Cn+1 and a hermitian metric is induced from the
standard hermitian inner product on Cn+1. We compute the curvature of the
associated Chern connection in the chart U0 = {z0 6= 0} in which J is trivialised
by

ϕ0 : Cn × C→ J

ϕ0((w1, . . . ,wn), u) = u(1, w1, . . . , wn) ∈ J |[1,w1,...,wn].

A non-vanishing holomorphic section is given by s([1, z1, . . . , zn]) = (1, z1, . . . , zn)
and so

h = 〈s, s〉 = 1 +

n∑
i=1

|zi|2, and Θ = ∂̄∂ log h.

Hermitian metrics on complex manifolds

A particular holomorphic vector bundle associated to a complex manifold is
T 1,0M , i.e. the holomorphic tangent bundle. A holomorphic frame on T 1,0M
can be given as ei = ∂

∂zi
for local complex coordinates z1, . . . , zn and a hermitian

metric on T 1,0M can be locally written as

h =
∑
i,j

hijdzi ⊗ dz̄j

where [hij ] is a hermitian matrix. We can also view h as a C-valued metric on
TMR. Observe that

Reh =
1

2

∑
i,j

hijdzidz̄j , and

Imh =

√
−1

2

∑
i,j

hijdzi ∧ dz̄j .

Thus a hermitian metric on T 1,0M gives us:

1) a Riemannian metric g on TMR which satisfies g(JX, JY ) = g(X,Y ), and
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2) a non-degenerate 2-form ω =
√
−1
2

∑
i,j

hijdzi∧dz̄j called the fundamental form

of g with ω(X,Y ) = g(JX, Y ).

Example 3.2.8. Suppose that dimCM = 1, and z = x+iy is a local coordinate. A
hermitian metric on T 1,0M is then written locally as h dz⊗dz̄ for a local function
h > 0. The connection matrix of the Chern connection is (∂h)h−1 = ∂ log h

∂z dz,
and the curvature matrix is

Θ = ∂̄∂ log h =
∂2 log h

∂z∂̄z
dz ∧ dz̄ =

(
−1

4
∆ log h

)
dz ∧ dz,

where ∆f = ∂2f
∂x2 + ∂2f

∂y2 is the usual Laplacian. The fundamental form of (M,h)

is
√
−1
2 h dz ∧ dz̄ and hence

Θ = −
√
−1

(
−∆ log h

2h

)
︸ ︷︷ ︸

Gaussian curvature
of a surface

ω.

Curvature of subbundles and quotient bundles

Definition 3.2.9. Let E be a hermitian holomorphic vector bundle on a complex
manifold M . We say that a section s ∈ Γ(Λ1,1M ⊗ Hom(E,E)) is positive1 at
x ∈ M (notation: s(x) > 0) if s(x)(v, v̄) ∈ Hom(Ex, Ex) is a positive definite
hermitian matrix for every v ∈ T 1,0M . Similarly s(x) ≥ 0, s(x) < 0, s(x) ≤
0, s(x) ≥ s′(x) etc. We write s > 0 etc. if s(x) > 0 etc. at every point x ∈M .

Example 3.2.10. In example 3.2.7 we computed the curvature of the tautological
bundle on CPn with the metric induced from CPn × Cn+1 as given (on z0 6= 0)
by

Θ = ∂̄∂ log

(
1 +

n∑
i=1

|zi|2
)
.

Hence:

Θ(x)

(
∂

∂z̄i
,
∂

∂zi

)
=

∂2

∂zi∂z̄i
log

(
1 +

n∑
i=1

|zi|2
)

=
∂

∂zi

 zi

1 +
n∑
i=1

|zi|2


=

1

1 +
n∑
i=1

|zi|2
− ziz̄i(

1 +
n∑
i=1

|zi|2
)2 =

1 +
∑
j 6=i
|zj |2(

1 +
n∑
i=1

|zi|2
)2 > 0.

Therefore Θ(x)
(

∂
∂zi
, ∂
∂z̄i

)
< 0 for i = 1, . . . , n and all x, i.e. Θ < 0.

1more precisely: Griffiths-positive
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Let now F be a holomorphic subbundle of E and equip F with the induced
hermitian metric. Write RE and RF for the curvatures of the respective Chern
connections. These are sections of Λ1,1M⊗Hom(E,E) and Λ1,1M⊗Hom(F, F ),
respectively. Let N = F⊥. This is a smooth complex subbundle of E. If
s ∈ Γ(F ) and t ∈ Γ(N), then

0 = d〈s, t〉 = 〈Ds, t〉+ 〈s,Dt〉.

This means that in a frame of E consisting of a frame for F together with a
frame for N , the connection matrix of D = DE has the form

ϑE =

(
ϑF A
−A∗ ϑN

)
,

where A is a matrix of (1, 0)-forms. We compute the curvature matrix with
respect to this decomposition:

ΘE = dϑE − ϑE ∧ ϑE =

(
dϑF − ϑF ∧ ϑF +A ∧A∗ something

something something

)
,

and conclude that the curvature matrix of DF satisfies

ΘE |F = ΘF +A ∧A∗.

Since A has type (1, 0), A ∧A∗ ≥ 0, and so RF ≤ RE |F , which means that the
curvature decreases in holomorphic subbundles. In particular, if E 'M ×Ck is
a trivial bundle equipped with the standard hermitian metric, so that RE ≡ 0,
then RF ≤ 0 for any holomorphic subbundles of E (as it was for the tautological
bundle J). If we apply this to a submanifold M of Cn and F = T 1,0M ⊂
T 1,0Cn|M with the induced hermitian metric, we conclude that the curvature
of such T 1,0M is always nonpositive. In particular if M is a Riemann surface
locally embedded in Cn (as a complex submanifold), then its Gaussian curvature
is nonpositive.

Observe that the same calculation for the quotient bundle Q = E/F shows
that RQ ≥ RE |F , i.e. the curvature increases in holomorphic quotient bundles.

As an application suppose that a holomorphic vector bundle E
π→M is generated

by its sections, i.e. there exist holomorphic sections s1, . . . , sl ∈ H0(M,E),
l ≥ rankE, such that s1(x), . . . , sl(x) generate Ex for every x ∈ M . This gives
us a surjective (holomorphic) vector bundle homomorphism

M × Cl → E, (x, u) 7−→
l∑
i=1

uisi(x),

which can be interpreted as saying that E is a quotient bundle of a trivial
bundle. If we equip E with the hermitian metric induced from the Euclidean
metric on M × Cl, then we conclude that RE ≥ 0.
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3.3 Chern classes of complex vector bundles

Let E
π→ M be a complex vector bundle on a smooth manifold, and D an

arbitrary connection on E. Its curvature RD is a section of Λ2M ⊗Hom(E,E),
which we can view as a matrix of 2-forms and speak of the trace trRD ∈ Ω2(M)
of RD. Recall the formula for the curvature matrix of D in a local frame:
Θ = dϑ − ϑ ∧ ϑ. Therefore tr Θ = tr dϑ = d trϑ, and hence trRD is a closed
2-form2, called the Ricci form of D.

Lemma 3.3.1. The cohomology class [trRD] ∈ H2
dR(M) ⊗ C does not depend

on D.

Proof. Let D and D′ be two connections on E and set A = D − D′. Observe
that it is a well-defined global section of Γ(Λ1M ⊗Hom(E,E)), and therefore

trRD − trRD
′

= tr(Θ−Θ′) = d tr(ϑ− ϑ′) = d trA

is a globally defined exact 1-form.

Remark 3.2.4 implies that [trRD] is purely imaginary.

Definition 3.3.2. The cohomology class
√
−1

2π [trRD] ∈ H2
dR(M) is called the first

Chern class of E and is denoted by c1(E).

This is a topological invariant of a vector bundle.

Example 3.3.3. We compute c1(JCP1). Recall that we computed the curvature
matrix of the Chern connection for the hermitian metric induced from CP1×C2

in the chart U0 as

Θ = ∂̄∂ log
(
1 + |z|2

)
=

1

(1 + |z|2)2
dz̄ ∧ dz.

Now, H2
dR(CP1) is identified with C via integration: ω 7−→

∫
CP1

ω. We compute

c1(JCP1) =

√
−1

2π

∫
C

1

(1 + |z|2)2
dz̄ ∧ dz =

z=reiθ

1

π

∫
[0,2π]×[0,∞)

r

(1 + r2)2
dθ ∧ dr

= − 1

π

∞∫
0

2π∫
0

r

(1 + r2)2
dθ dr = −1.

Remark 3.3.4. This actually implies that c1(JCPn) = −1 for any n. Indeed,
restricting JCPn to a CP1 ⊂ CPn is just JCP1 , and hence c1(JCPn) ·CP1 = −1 for
any CP1 in CPn. Since H2(CPn) is generated by such a CP1, the claim follows.

Proposition 3.3.5. Let E and F be complex bundles of ranks k and l on a
smooth manifold M. Then

2We cannot conclude that it is exact, since it is d(something) only locally.
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(i) c1(ΛkE) = c1(E)

(ii) c1(E ⊕ F ) = c1(E) + c1(F )

(iii) c1(E ⊗ F ) = lc1(E) + kc1(F )

(iv) c1(E∗) = −c1(E)

(v) c1(f∗E) = f∗c1(E).

Proof. Use the induced connections on these bundles as defined in the home-
work.

We now define higher Chern classes. The 1st one was defined using the
trace of the curvature RD ∈ Γ(Λ2M ⊗ Hom(E,E)). We view RD as a matrix
with entries in Λ2M , and observe that the even exterior algebra

⊕
Λ2iM is

commutative (with respect to the exterior product). Therefore we can consider
polynomials in the entries of such a matrix, e.g. the determinant or the adjoint
matrix. In particular, invariant polynomials make sense. Recall that if A is a
k × k matrix, then we can set

det(t+A) =

k∑
i=0

Pi(A)tk−i

so that P1(A) = trA, Pk(A) = det(A). Each Pi is a homogeneous polynomial
of degree i in entries of A, invariant under conjugation. If we apply this to RD

we obtain closed forms

Pi(R
D) = Pi(Θ) ∈ Ω2i(M).

Definition 3.3.6. The i-th Chern class of a complex vector bundle E over a
smooth manifold M is the cohomology class

ci(E) =

[
Pi

(√
−1

2π
RD
)]
∈ H2i

dR(M), i = 1, . . . , rankE.

Once again, this does not depend on the choice of a connection D (exercise),
and it is real, owing to Remark 3.2.4.

First Chern class of a line bundle

Let L
π→ M be a complex line bundle on a smooth manifold M . Recall, from

§2.1, that L is given by transition functions gij : Ui ∩ Uj → GL(1,C), where
U = {Ui}i∈I is an open cover of M . These transition functions satisfy

gijgji = 1, gijgjkgki = 1, ∀i, j, k ∈ I.

Since GL(1,C) ' C∗, the collection {gij} can be viewed as a Čech cochain
in C1

(
U , (C∞)∗

)
, where (C∞)∗ is the sheaf of nonvanishing complex-valued
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smooth functions on M . The above conditions on the gij imply that this cochain
is a cocycle, i.e. δ({gij}) = 0. Moreover, if U ′ is another covering on which L
is trivialised, then L is also trivialised on a common refinement of U and U ′. If
{gij} and {g′ij} are two sets of transition functions on this common refinement,
then they correspond to the same line bundle if and only if there exist smooth
nonvanishing functions fi such that g′ijfj = figij for all i, j. This means that

g′ijg
−1
ij is a Čech coboundary. We conclude:

Proposition 3.3.7. Complex line bundles on M are in 1 − 1 correspondence
with elements of Ȟ1

(
M, (C∞)∗

)
. 2

Remark 3.3.8. Line bundles form a group with respect to the tensor product.
It is easy to see that the above correspondence is a group isomorphism.

We have an exact sequence of sheaves (cf. Example 2.3.9):

0 −→ Z −→ C∞ −→ (C∞)∗ −→ 0, (3.3.1)

where the second map is f 7→ exp(2πif). The long exact sequence on cohomol-
ogy, together with Proposition 2.4.8, yields an isomorphism

0→ Ȟ1
(
M, (C∞)∗

)
−→ Ȟ2(M,Z)→ 0. (3.3.2)

Hence:

Proposition 3.3.9. Complex line bundles on M are in 1 − 1 correspondence
with Ȟ2(M,Z). 2

The image of a line bundle L under the isomorphim (3.3.2) is called the Eu-
ler class of L, denoted by e(L). The group Ȟ2(M,Z) is a topological invariant,
isomorphic to the (second) singular cohomology of M . There is a natural map
Ȟ2(M,Z)→ Ȟ2(M,R) ' H2

dR(M), given by tensoring with R. It is an isomor-
phism on the free part of the Z-module Ȟ2(M,Z) and it sends torsion elements
(i.e. any Z/pZ-part) to 0. We can now identify the differential-geometric def-
inition of the 1st Chern class with the purely topological notion of the Euler
class:

Theorem 3.3.10. Let L
π→M be a complex line bundle on a smooth manifold

M . Then c1(L) is equal to the image of e(L) in H2
dR(M).

Proof. We first work out the explicit form of isomorphism (3.3.2). Let U =
{Ui}i∈I be a cover such that each L|Ui is trivial, and let gij be the corre-
sponding transition functions. The 1-cocycle {gij} determines the element of
H1
(
M, (C∞)∗

)
correponding to L. In order to compute the connecting ho-

momorphism, we follow its construction in the proof of Theorem 2.4.6. We
may assume that U is fine enough so that each Ui ∩ Uj is contractible, and
set hij = (2π

√
−1)−1 log gij (defined uniquely up an additive integer). Then

{gij} is the image of {hij} ∈ C1(U , C∞) under the exponential map. The Čech
coboundary operator δ sends {hij} ∈ C1(U , C∞) to {zijk} ∈ C2(U , C∞), where

zijk = hij − hik + hjk =
1

2π
√
−1

(
log gij + log gjk + log gki

)
.
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This is the image of a cocycle in C2(U ,Z) representing e(L) ∈ Ȟ2(M,Z).
We now compare this with c1(L). Choose a connection D on L, compatible

with some hermitian metric on L. Owing to Remark 3.2.4 we can assume that
the connection “matrix” ϑi ∈ Ω1(Ui) for D on L|Ui is purely imaginary. The
curvature RD is now a global 2-form, given as dϑi in each Ui. Recall (Remark
2.4.11) the de Rham isomorphism Ȟq(M,R) = Hq

dR(M), valid for every q. The
proof of this works analogously to the proof of the Dolbeault theorem: we have
exact sequences of sheaves:

0→ R d−→ C∞
d−→ Z1

d → 0, 0→ Z1
d

d−→ Ω1 d−→ Z2
d → 0,

which give us isomorphisms

Ȟ2(M,R) ' Ȟ1(M,Z1
d) ' Ȟ0(M,Z2

d)/dȞ0(M,C∞) ' H2
dR(M).

Starting on the right, with c1(L), we get
√
−1

2π RD ∈ H0(M,Z2
d) which, from

the construction of the connecting homomorphism, corresponds to the cocycle√
−1

2π {ϑi − ϑj} ∈ Ȟ
1(M,Z1

d). The transformation law for the connection matrix
implies that ϑi−ϑj = d log gji = −d log gij , and applying the connecting homo-

morphism once again, gives the cocycle is −
√
−1

2π {log gij + log gjk + log gki} in

Ȟ2(M,R).

Remark 3.3.11. For a line bundle L, −2πic1(L) is the cohomology class of the
curvature RD for any connection D. If c1(L) = 0, then RD is exact, i.e. RD =
dφ for a global 1-form φ. This means that the connection D′ = D − φ has zero
curvature, i.e. L admits a flat connection. Such a bundle is called flat, and the
discussion in the paragraph after Proposition 3.3.9 shows that flat line bundles
on M are classified3 by torsion elements of Ȟ2(M,Z), i.e. those which become
zero in Ȟ2(M,R). If M is compact4, then the universal coefficient theorem
implies that the torsion part of Ȟ2(M,Z) is isomorphic to the torsion part of
H1(M,Z) ' π1(M)/[π1(M), π1(M)].

Further reading:

(i) Complex line bundles are classified by Ȟ2(M,Z). One can ask whether
there exist geometric objects associated to Ȟ3(M,Z) (and higher)? The
answer is yes; they are called (abelian) gerbes; see, e.g., M. Murray, An
Introduction to Bundle Gerbes, in: “The many facets of geometry” (OUP
2010), also arXiv:0712.1651, or Y. Loizides, Introduction to Gerbes, at
http://personal.psu.edu/yxl649/Introduction%20to%20bundle%

20gerbes.pdf.

(ii) We have seen that line bundles correspond to elements of
Ȟ1
(
M, (C∞)∗

)
. The same argument, involving trivialisations and

3As complex line bundles, not as gauge equivalence classes of (L,D).
4More generally, if M is of finite type, i.e. all homology groups Hi(M,Z) are finitely

generated.

http://personal.psu.edu/yxl649/Introduction%20to%20bundle%20gerbes.pdf
http://personal.psu.edu/yxl649/Introduction%20to%20bundle%20gerbes.pdf
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cocycles, shows that vector bundles of rank k correspond to Ȟ1
(
M,Gk

)
,

where Gk is the sheaf of nonabelian groups of GL(k,C)-valued functions.
Nonabelian cohomology quickly becomes very abstract if one wants to go
beyond H1. After the previous comment, you can guess that Ȟ2

(
M,Gk

)
is related to nonabelian gerbes. See p. 16 and following in: Ieke Moerdijk,
Introduction to the language of gerbes and stacks, arXiv:math/0212266.

(iii) Flat vector bundles are a large research area, mainly because they are
closely related to representations of the fundamental group of a manifold.
See, e.g., O. Guichard, An Introduction to the Differential Geometry of
Flat Bundles and of Higgs Bundles, in: “The Geometry, Topology and
Physics of Moduli Spaces of Higgs Bundles” (World Scientific 2018), also
at http://irma.math.unistra.fr/~guichard/assets/files/
intro-bdle-ims.pdf.

3.4 Chern classes of holomorphic vector bundles

First Chern class of a holomorphic line bundle

Let M be a complex manifold, O the sheaf of holomorphic functions, and O∗
the sheaf of non-vanishing holomorphic functions on M . The same argument
which led to Proposition 3.3.9 proves:

Proposition 3.4.1. Holomorphic line bundles on M are in 1−1 correspondence
with elements of Ȟ1(M,O∗). 2

Just as for complex line bundles, holomorphic line bundles form a group with
respect to the tensor product. The above bijection is a group isomorphism.

Definition 3.4.2. The group of (isomorphism classes of) holomorphic line bun-
dles on a complex manifold M is called the Picard group of M , denoted by
Pic(M).

We consider now the exponential sequence

0 −→ Z −→ O exp−→ O∗ −→ 0,

and the associated boundary map on cohomology

Ȟ1(M,O∗) δ−→ Ȟ2(M,Z).

This is similar to (3.3.2), but this time δ does not have to be either injective or
surjective. Observe, from the long exact cohomology sequence, that δ is injective
iff Ȟ1(M,O) = H0,1

∂̄
(M) = 0, and it is surjective iff Ȟ2(M,O) = H0,2

∂̄
(M) = 0.

Also, if L is a holomorphic line bundle, then δ(L) is still the Euler class of L as
a complex line bundle. This follows from the fact that δ and (3.3.2) commute
with the embedding Ȟ1(M,O∗) ↪→ Ȟ1

(
M, (C∞)∗

)
.

As an application, we can finally classify holomorphic line bundles on P1:

http://irma.math.unistra.fr/~guichard/assets/files/intro-bdle-ims.pdf
http://irma.math.unistra.fr/~guichard/assets/files/intro-bdle-ims.pdf
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Proposition 3.4.3. A holomorphic line bundle L on P1 is isomorphic to Hk,
where H is the hyperplane bundle and k = c1(L) ∈ Z.

Proof. In Ex. 1 on Homework 3 you have shown that H0,1

∂̄
(P1) = H0,2

∂̄
(P1) = 0.

Therefore δ is an isomorphism.

Remark 3.4.4. The line bundle Hk is usually denoted by O(k).

Remark 3.4.5. Since the map δ is group homomorphism, the set of (isomorphism
classes of) holomorphic line bundles with δ(L) = 0 is a subgroup of Pic(M), de-
noted by Pic0(M). These are holomorphic line bundles such that the underlying
complex line bundle is trivial. In Example 2.2.6 we have identified holomorphic
structures on the trivial line bundle over an elliptic curve C. We can now restate
the result of that example as: Pic0(C) ' C.

Prescribing the Ricci curvature of a Chern connection

Let E
π→ M be a holomorphic vector bundle over a complex manifold. Recall

that the curvature of the Chern connection for any hermitian metric has type
(1, 1) and that the curvature matrix in the unitary frame is skew-hermitian.

Therefore
√
−1

2π RD is hermitian, and hence Pi

(√
−1

2π RD
)

is a real (i, i)-form.

Theorem 3.3.10 implies now that

ci(E) ∈ Hi,i(M) ∩H2i(M,Z).

HereH2i(M,Z) really means the image of H2i(M,Z) in H2
dR(M), i.e. H2i(M,Z)

modulo torsion.
Let now ϕ be a closed (1, 1)-form5 with [ϕ] = c1(E). We ask: does there

exist a hermitian metric on E, such that the Ricci curvature (i.e. trRD) of the
associated Chern connection is −2πiϕ?

Let 〈 , 〉 be an arbitrary hermitian metric on E. In a local holomorphic frame
(e1, . . . , ek) with the associated matrix hij = 〈ei, ej〉 the curvature matrix of the
Chern connection is given by the following formula (cf. (3.2.2)):

Θ = ∂̄(∂hh−1),

which means that the Ricci form trRD is represented in this local frame by

∂̄∂ log deth.

We now modify the metric 〈 , 〉 by multiplying it by ef/k, where f is a smooth
real function on M and k = rankE. The new matrix h′ is given by

h′ij = ef/k〈ei, ej〉,

and hence deth′ = ef deth. Therefore the Ricci forms of the two Chern con-
nections are related by

trRD
′
− trRD = ∂̄∂f.

5Observe that a closed (1, 1)-form is also ∂̄-closed.
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Therefore we find a hermitian metric with trRD
′

= −2πiϕ, provided we can
solve the equation

∂̄∂f = −2πiϕ− trRD.

The right-hand side of this equation is a closed imaginary (1, 1)-form cohomol-
ogous to 0:

[−2πiϕ− trRD] = −2πi[ϕ] + 2πic1(E) = 0.

Therefore the answer to our question is: we can prescribe the Ricci curvature of
a Chern connection on complex manifolds which satisfy the following condition:

Any exact real (1, 1)-form β on M is of the form
√
−1∂∂̄f for a smooth

function f : M → R.
This condition is called the global ∂∂̄-lemma and a simple sufficient criterion

is given by:

Lemma 3.4.6. Let M be a complex manifold with H0,1

∂̄
(M) = 0. Then the

global ∂∂̄-lemma holds on M .

Proof. Since β is exact, there exists a real 1-form α such that dα = β. We
decompose α as τ + τ ′, where τ has type (1, 0) and τ ′ (0, 1). It follows that
τ ′ = τ . We have

β = (∂ + ∂̄)(τ + τ) = ∂τ︸︷︷︸
(2,0)

+ (∂̄τ + ∂τ)︸ ︷︷ ︸
(1,1)

+ ∂̄τ︸︷︷︸
(0,2)

,

and therefore β = ∂̄τ + ∂τ , ∂τ = 0 = ∂̄τ . Since H0,1(M) = 0, there exists a
function u : M −→ C such that τ = ∂̄u. Then τ = ∂u, and:

β = ∂̄τ + ∂τ = ∂̄∂u+ ∂∂̄u = ∂∂̄(u− u) = 2i∂∂̄(Imu).

The claim follows with f = 2 Imu.

Chern classes of a complex manifold

Definition 3.4.7. Let M be a complex manifold. The i-th Chern class ci(M) of
M is ci(TM), where TM is the holomorphic tangent bundle, i = 1, . . . ,dimCM .

Remark 3.4.8. It follows from Proposition 3.3.5 that c1(M) = c1(K∗M ), i.e.
the first Chern class of a complex manifold equals the first Chern class of its
anti-canonical bundle.

Example 3.4.9. We can compute the first Chern class of a projective space:

c1(CPn) = c1(K∗CPn) = c1
(
(J∗)⊗n+1

)
= (n+ 1)c1(J∗) = n+ 1,

where we used the result of Example 3.3.3. For n = 1, we obtain c1(CP1) = 2.
This is just the Gauss-Bonnet theorem: for any oriented compact surface S and
any hermitian metric on TS we have (cf. Ex. 3.2.8)

c1(S) =

∫
S

i

2π
R =

R=−iK

1

2π

∫
S

K = χ(S).
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We wish to relate the first Chern class of a submanifold Y of M to c1(M).
We have an exact sequence of holomorphic vector bundles on Y :

0 −→ TY −→ TM −→ TM/TY −→ 0. (3.4.1)

The bundle TM/TY is called the normal bundle of Y in M , and is denoted by
NY/M or simply NY . If dimM = n and dimV = m, then taking the highest
exterior power shows that:

K∗M |Y ' K∗Y ⊗ Λn−mNY . (3.4.2)

Therefore c1(Y ) = c1(M)− c1(NY ).

Of particular interest are complex manifolds with c1(M) = 0. This condition
is satisfied if the canonical bundle is trivial, i.e. there exists a non vanishing
holomorphic n-form on M (n = dimCM). Here are some examples:

Examples 3.4.10. 1. Cn, but also quotients of Cn by discrete subgroups pre-
serving the complex volume form dz1 ∧ · · · ∧ dzn, e.g. quotients by lattices
(complex tori).

2. The quadric Q = {(z1, z2, z3) ∈ C3 | z2
1 + z2

2 + z2
3 = 1}. Observe that this

is a complexification of S2, so that H2(Q) 6= 0. The following holomorphic
2-form does not vanish on Q, and therefore trivialises KQ:

z1dz2 ∧ dz3 + z2dz3 ∧ dz1 + z3dz1 ∧ dz2.

3. Fermat hypersurface of degree n+ 1 in a projective space:

V = {[z0, z1, . . . , zn] ∈ CPn | zn+1
0 + · · ·+ zn+1

n = 0}.

Since V is defined by a homogeneous equation of degree n+1, i.e. by a section
of Hn+1, the normal bundle NV is isomorphic to Hn+1|V (see Homework 7).
Since KCPn ' (Hn+1)∗, formula (3.4.2) shows that KV is trivial.
For n = 3, this Fermat hypersurface is an example of the famous K3 surfaces
(simply connected 2-dimensional complex manifolds with c1 = 0).

We finish the section with a generalisation of the Gauss-Bonnet theorem:

Theorem 3.4.11 (Gauss-Bonnet-Chern theorem). If M is a compact complex
manifold with dimCM = n, then cn(M) = χ(M), i.e.∫

M

det

(√
−1

2π
RD
)

= χ(M),

for any connection D on TM .

Sketch of a proof. Fix a hermitian metric 〈 , 〉 on TM . We can find a (smooth)
vector field X with finitely many zeros p1, . . . , pk. Let Ui be disjoint neighbour-
hoods of pi such that TUi is trivial. Find a function φ which is ≡ 1 on each
Bi(ε) = {m ∈ Ui; |X(m)| ≤ ε} and ≡ 0 on M\

⋃
Bi(2ε). Moreover ε should be

small enough enough so that each Bi(2ε) is relatively compact in Ui.
Using partitions of unity construct a 〈 , 〉-compatible connection ∇ with fol-

lowing properties:
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(i) on M\
⋃
Bi(2ε), ∇ preserves the orthogonal splitting TM = 〈X〉⊕E and

the curvature of the line bundle 〈X〉 is identically zero;

(ii) for each i = 1, . . . , k, ∇ is flat on Bi(ε);

(iii) On each Bi(2ε) the connection matrix of∇ is of the form (1−φ)π∗Ω, where
π : Bi(2ε)\{pi} → S2n−1 is the radial projection, and Ω is the connection
matrix of the standard round metric on S2n−1.

Condition (i) implies that det
(√
−1

2π R∇
)

is identically 0 on M\
⋃
Ui. On

the other hand, conditions (ii) and (iii) imply that, for each i = 1, . . . , k,∫
Ui

det
(√
−1

2π R∇
)

is equal to the index of the vector field X at pi. The re-

sult follows from the Poincaré-Hopf theorem.

Remark 3.4.12. As the above proof suggests, the result is valid for any almost
complex manifold. In fact it is true for any even-dimensional oriented manifold,
provided we replace cn(M) with the Euler class of the tangent bundle.

Further reading:

(i) For a detailed proof of the Gauss-Bonnet-Chern theorem see the
beautiful original paper of Chern (which started the whole characteristic
classes theory): A simple intrinsic proof of the Gauss-Bonnet formula for
closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747–752; or
the survey article The Gauss-Bonnet-Chern Theorem on Riemannian
Manifolds by Yin Li, arXiv:1111.4972.

(ii) For more fun with Chern classes see §§3.3–3.4 in Griffiths & Harris.

3.5 Line bundles and divisors

In complex analysis an important role is played by meromorphic functions. We
now define them on any complex manifold.

Definition 3.5.1. Let M be a complex manifold. A meromorphic function f
on M is given locally as a quotient of two holomorphic functions, i.e. for some
open covering {Ui}i∈I of M we have f |Ui = gi/hi, where gi and hi are relatively
prime6 holomorphic functions on Ui, and gihj = gjhi on any Ui ∩ Uj .

Remark 3.5.2. f is not really a function: it is not defined at points where
gi = hi = 0. Strictly speaking, f is an equivalence class of {Ui, gi, hi}, where
the equivalence relation is essentially given in the above definition. I shall leave
the details to the more formally inclined among you.

6As elements of the ring O(Ui) (which is a GCD domain), i.e. any holomorphic function
which divides both gi and hi does not vanish on Ui.
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We can now define meromorphic functions on any open subset of M , and,
consequently, we have the (additive) sheaf M of meromorphic functions on M ,
as well as the (multiplicative) sheaf M∗ of meromorphic functions which are
not identically zero.

We now consider zeros and poles of a meromorphic function. Observe that
the zero set of a holomorphic function f is not necessarily a submanifold (unless
0 is a regular value of f). In fact, we do not want to consider zeros of f as just
a subset: as for holomorphic functions of one variable, we want to keep track of
the multiplicities of zeros.

Definition 3.5.3. A subset V of M is called an analytic hypersurface if every
point p ∈ V has a neighbourhood U such that V ∩ U is the zero set of a holo-
morphic function f ∈ O(U) which divides every other function g ∈ O(U) with
g|V ∩U = 0. f is called a local defining function near p. An analytic hypersurface
is called irreducible if V cannot be written as a union of analytic hypersurfaces
(i.e. the local defining functions cannot be factorised into holomorphic functions
which have zeros on V ).

A divisor D on M is a locally finite7 formal linear combination

D =
∑

kiVi

of irreducible analytic hypersurfaces with integer coefficients.

Clearly divisors form an abelian group with respect to addition, denoted by
Div(M).

Let h be a holomorphic function on M and V an irreducible analytic hy-
persurface of M . Let p ∈ V and let f be local defining function of V in a
neighbourhood of p. We define the order of h along V at p to be the largest
integer k = kV,p such that fk divides h in a neighbourhood of p. Observe that
kV,p is locally constant, and since an irreducible analytic hypersurface must be
connected, kV,p is actually independent of p. We can therefore speak of the or-
der of h along V , denoted ordV (h). It is basically the order to which h vanishes
along V . We now define the divisor (h) of h as

∑
ordV (h)V , where the sum

runs over all irreducible analytic hypersurfaces in M . This is a locally finite
sum and (h) is well defined. Observe that if dimCM = 1, then (h) =

∑
mizi,

where zi are distinct zeros of h and mi is the multiplicity of zi.
Similarly, if f is a meromorphic function with a local representation g/h,

then we define the order of f along V to be ordV (f) = ordV (g)− ordV (h). The
divisor (f) of f is then

∑
ordV (f)V .

We have the following sheaf-theoretic interpretation of divisors:

Proposition 3.5.4. Div(M) ' Ȟ0(M,M∗/O∗), i.e. divisors correspond to
global sections of the sheaf M∗/O∗.

Proof. A global section ofM∗/O∗ is given by a (locally finite) open cover {Ui}
and meromorphic functions fi ∈ M∗(Ui) such that on any Ui ∩ Uj fi/fj ∈
O∗(Ui ∩ Uj). This last condition means that on Ui ∩ Uj ordV (fi) = ordV (fj),

7I.e. any point has a neighbourhood which intersects only finitely many Vi.



3.5. LINE BUNDLES AND DIVISORS 69

for any V . Therefore the divisor D =
∑

ordV (fi)V is well defined. Conversely,
let D =

∑
kiVi be a divisor, and let {Uα} be an open cover such that only

finitely many Vi intersect each Uα and each of these Vi has a local defining
function fi ∈ O(Uα). Set fα =

∏
fkii . This is a meromorphic function on Uα.

Since the local defining functions are determined up to a nonvanishing factor,
fα is defined up to multiplication by an element of O∗(Uα). Therefore (Uα, fα)
defines a global section of M∗/O∗.

Remark 3.5.5. In algebraic geometry, elements of Div(M) are called Weil divi-
sors and elements of Ȟ0(M,M∗/O∗) are Cartier divisors. They do not coincide
for more general (singular) spaces.

Consider the short exact sequence

0 −→ O∗ −→M∗ −→M∗/O∗ −→ 0.

The long exact cohomology sequence reads:

0→ Ȟ0(M,O∗)→ Ȟ0(M,M∗)→ Ȟ0(M,M∗/O∗)→ Ȟ1(M,O∗)→ Ȟ1(M,M∗)→ . . .

Since Ȟ1(M,O∗) is the group of holomorphic line bundles on M , this means
that there is a natural map associating a line bundle to a divisor. We can see this
explicitly as follows. If D is a divisor with local defining functions8 fi ∈M∗(Ui)
for some open cover {Ui}, then gij = fi/fj are holomorphic and nonvanishing on
each Ui∩Uj . Moreover gijgjkgki = 1 on every triple intersection, and, hence gij
are transition functions of a line bundle. It is easy to see that a different choice of
{Ui} and fi gives an isomorphic line bundle. Moreover, this line bundle, denoted
by [D], is trivial if and only if there is a cover {Ui} and functions hi ∈ O∗(Ui)
such that gij = hi/hj . But this means that fih

−1
i = fjh

−1
j on every Ui ∩Uj , so

that f defined as fih
−1
i on Ui is a global meromorphic function with (f) = D.

Therefore [D] is trivial if and only if D is the divisor of a meromorphic function.
Furthermore observe, directly from the definition of [D], that the local data

(Ui, fi) defines a meromorphic section of [D], simply because the functions fi
satisfy fi = gijfj on each Ui ∩Uj . Conversely, if L is a holomorphic line bundle
and s is a meromorphic section of L, i.e. there exist local meromorphic functions
si which satisfy si = gijsj on the intersections, then the si define a divisor D
with L = [D]. The divisor associated to a meromorphic section is denoted by
(s).

Remark 3.5.6. This shows, in particular, that a line bundle is associated to a
divisor if and only if it admits a meromorphic section. We shall prove later
that this is the case for every line bundle on a projective manifold. In other
words, if M is projective, then the map Ȟ0(M,M∗/O∗) → Ȟ1(M,O∗) (i.e.
Div(M) → Pic(M)) is surjective. This is false in general; in fact, “most”
compact complex manifolds do not admit any divisors, but many have nontrivial
holomorphic line bundles.

8If D =
∑
ksVs and hs is a local defining function of Vs, then the local defining function

of D is
∏
hkss .



70 CHAPTER 3. CONNECTIONS, CURVATURE, METRICS

An even stronger property is the vanishing of Ȟ1(M,M∗). This is not
true even for projective manifolds: see the article “The sheaf of nonvanishing
meromorphic functions in the projective algebraic case is not acyclic” by X.
Chen, M. Kerr, and J.D. Lewis, C. R. Acad. Sci. Paris, Ser. I, 348 (2010),
291–293.

It perhaps also worth pointing out thatM andM∗ are not coherent sheaves
(cf. Remark 2.3.12). In particular GAGA does not apply, so that the sheaf of
algebraic meromorphic functions (local quotients of two polynomials) on pro-
jective manifolds is much smaller than M.

We now wish to express c1([D]) in terms of D. Observe that if V is an
analytic hypersurface in M , then its set of singular points has (complex) codi-
mension at least 2 in M . Therefore integration over V is well defined for forms
with compact support, and we obtain a linear functional φ→

∫
V
φ on Hn−2

c (M).
Via Poincaré duality this corresponds to a cohomology class [ηV ] ∈ H2

dR(M).
This Poincaré dual is characterised by∫

M

ηV ∧ φ =

∫
V

φ for any closed (n− 2)-form φ with compact support.

We can also integrate over formal linear combinations of V : just integrate over
each V and take the corresponding linear combination of results. Therefore we
can associate the Poincaré dual [ηD] to any divisor D on M . We have:

Theorem 3.5.7. Suppose that a holomorphic line bundle L on a complex man-
ifold is of the form L = [D] for some divisor D. Then c1(L) = [ηD] ∈ H2

dR(M).

Proof. Let D =
∑
kiVi for a locally finite collection {Vi} of irreducible analytic

hypersurfaces. We need to show that the curvature formR of a Chern connection
on [D] satisfies √

−1

2π

∫
M

R ∧ φ =
∑
i

ki

∫
Vi

φ

for any compactly supported (n− 2)-form φ. Since φ has compact support, and
{Vi} is locally finite, the right hand side is a finite sum for any such φ. Since
c1 is additive with respect to tensor product of line bundles, it is additive with
respect to addition of divisors. It is therefore enough to prove this identity for
D = V - a single irreducible analytic hypersurface. Let us choose a hermitian
metric on L. Then, for any nonvanishing local holomorphic section e of L,
the curvature matrix Θ of the corresponding Chern connection is given by (cf.
(3.2.3)):

Θ = ∂̄∂ log |e|2.

We can rewrite ∂̄∂ as dd′, where d′ = 1
2 (∂ − ∂̄). Let {Ui, fi} be local defining

data for V and let s be the corresponding holomorphic section of [V ] with
s−1(0) = V , i.e. s = fi on Ui. We consider a tubular neighbourhood of V given
by

D(ε) = {m ∈M ; |s(m)| < ε},
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and integrate, using the Stokes theorem:∫
M

R ∧ φ = lim
ε→0

∫
M\D(ε)

dd′ log |s|2 ∧ φ = lim
ε→0

∫
∂D(ε)

d′ log |s|2 ∧ φ.

On each Ui we can write |s|2 = hifif̄i, for some positive real function hi. We
can replace each Ui with an open subset, which is relatively compact in Ui, and
therefore we can assume that d′hi is bounded on D(ε) ∩ Ui. Consequently:

lim
ε→0

∫
∂D(ε)∩Ui

d′ log hi ∧ φ = 0.

It follows that

lim
ε→0

∫
∂D(ε)∩Ui

d′ log |s|2 ∧ φ = lim
ε→0

√
−1 Im

∫
∂D(ε)∩Ui

∂ log fi ∧ φ.

In a neighbourhood of a smooth point p of V ∩ Ui we can find holomorphic
coordinates (w1, . . . , wn) with w1 = fi, and w′ = (w2, . . . , wn) holomorphic
coordinates on V . We can write the form φ as

φ = g(w)ω + ψ, where ω = dw2 ∧ · · · ∧ dwn ∧ dw̄2 ∧ · · · ∧ dw̄n,

and every term in ψ contains either dw1 or dw̄1. Then

Im ∂ log fi ∧ φ = Im
dw1

w1
∧ (g(w)ω + ψ) = Im

dw1

w1
∧ g(w)ω.

Then, in a neighbourhood U of p

Im lim
ε→0

∫
∂D(ε)∩U

∂ log fi ∧ φ = Im lim
ε→0

∫
∂D(ε)∩U

dw1

w1
∧ g(w)ω =

= Im lim
ε→0

∫
|w1|=ε/

√
hi

dw1

w1
∧g(w)ω = Im lim

ε→0

(∫
|w1|=ε/

√
hi

dw1

w1
∧g(0, w′)ω+O(ε)

)
=

= − Im lim
ε→0

∫
w′

(∫
|w1|=ε/

√
hi

dw1

w1

)
g(0, w′)ω = −2π

∫
w′
g(0, w′)ω = −2π

∫
V ∩U

φ.

Therefore √
−1

2π

∫
M

R ∧ φ =

∫
V

φ,

which concludes the proof.



Chapter 4

Kähler manifolds

4.1 Kähler metrics

Recall from §3.2 that a hermitian manifold is a complex manifold M with a
hermitian metric on T 1,0M or equivalently a Riemannian metric g on TM (now
denoting the real tangent bundle) which is invariant with respect to the complex
J , i.e.:

g(JX, JY ) = g(X,Y ) ∀X,Y ∈ Γ(TM).

The bundles TM and T 1,0M are isomorphic, via X 7→ X − iJX, and we have
two connections on TM associated to g: the Chern connection D and the Levi-
Civita connection ∇. Both of them are compatible with g:{

d(g(X,Y )) = g(DX,Y ) + g(X,DY )

d(g(X,Y )) = g(∇X,Y ) + g(X,∇Y )
∀X,Y ∈ Γ(TM).

In addition, D satisfies D0,1 = ∂̄, which can be rephrased as

DZ(JX) = JDZX ∀X,Z ∈ Γ(TM),

or simply as DJ = 0. On the other hand, the Levi-Civita connection ∇ is
torsion free:

∇XY −∇YX = [X,Y ] ∀X,Y ∈ Γ(TM).

Clearly, hermitian metrics such that these two connections coincide should be
interesting. First of all, let us give several other equivalent conditions:

Theorem 4.1.1. Let g be a hermitian metric on a complex manifold (M,J).
Then the following are equivalent

i) J is parallel for the Levi-Civita connection;

ii) D has zero torsion;

iii) the Levi-Civita and the Chern connections coincide;

72
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iv) The fundamental form ω of g is closed (recall that ω(X,Y ) = g(JX, Y ));

v) For all p ∈ M there exists a smooth real function f in a neighbourhood U
of p such that ω|U = i∂∂̄f ;

vi) Around each point p ∈M there exist holomorphic coordinates w = (w1, . . . , wn),
such that

gw

( ∂

∂wi
,
∂

∂wj

)
= δij +O(|w|2).

Proof. Note that conditions i), ii), and iii) are equivalent owing to the uniqueness
of Chern and Levi-Civita connections. We are going to show that i) =⇒ iv)
=⇒ v) =⇒ vi) =⇒ i).

i) =⇒ iv): Since∇g = 0 and∇J = 0, ∇ω = 0. Every parallel form is closed, however,
due to the identity:

dα(X0, . . . , Xp) =

p∑
i=0

(−1)i(∇Xiα)(X0, . . . , X̂i, . . . , Xp), ∀α ∈ Ωp(M).

iv) =⇒ v): Let U be a neighbourhood of p biholomorphic to a polydisk Cn. Since ω|U
is exact, the claim follows from Lemma 3.4.6 (the ∂∂̄-lemma).

v) =⇒ vi): In local complex coordinates around p ∈M we can write:

ω = i
∑
l,m

ωlmdzl ∧ dz̄m,

where

ωlm =
1

2
δlm +

∑
j

(ajlmzj + bjlmz̄j) +O(|z|2).

Since ω is real, ajlm = bjlm. It follows from v) that

ajlm =
∂3f

∂zj∂zl∂zm
,

which implies that ajlm = aljm for all j, l,m. Set wm = zm +
∑
l,m

ajlmzjzl

and compute:

i

2

∑
m

dwm ∧ dw̄m =
i

2

∑
m

dzm ∧ dz̄m + i
∑
l,m,j

ajlmzj dzl ∧ dz̄m+

+ i
∑
l,m,j

ajlmz̄j dzm ∧ dz̄l +O(|z|2) =

= i
∑
l,m

ωlm dzl ∧ dz̄m +O(|z|2) = ω +O(|w|2),

which is equivalent to vi).
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vi) =⇒ i): Let p ∈M and let wi = xi +
√
−1 yi be the coordinates around p found in

vi). Since the Christoffel symbols of the Levi-Civita connection ∇ depend
only on the first derivatives of the metric tensor, they are equal to zero at
p. Consequently ∇J |p = 0. Since p is arbitrary, ∇J = 0 on M .

Definition 4.1.2. A hermitian metric on a complex manifold satisfying the equiv-
alent conditions i) – vi) is called a Kähler metric.
Its fundamental form is called the Kähler form, and the local function in v) is
the Kähler potential. Local coordinates having the property in vi) are called
normal Kähler coordinates.

Remark 4.1.3. Yet another equivalent definition of a Kähler metric is that its
holonomy is a subgroup of U(n) (this is an equivalent formulation of i)).

Examples 4.1.4. 1) Standard metric on Cn

g =
1

2
Re

(∑
s

dzs ⊗ dz̄s

)
.

Its fundamental form is

ω =
i

2

∑
s

dzs ∧ dz̄s =
i

2
∂∂̄|z|2,

and, hence, f(z) = 1
2 |z|

2 is a global Kähler potential f : Cn → R. Note that
g and J are invariant under the standard action of U(n) on Cn.

2) The Fubini-Study metric on CPn:
For z = (z0, . . . , zn) ∈ Cn+1\{0} set ω = i∂∂̄ log

(
|z|2
)

and observe that ω is
invariant under rescalings z 7→ λz, λ ∈ C∗. Therefore ω defines a real, closed
(1, 1)-form on CPn.
Now set g(X,Y ) = ω(X, JY ), and observe that condition iv) of the above
theorem implies that g is a Kähler metric provided it is positive definite. We
compute g in the chart U0 = {z0 6= 0} with local coordinates wi = zi

z0
. Write

ω = i∂∂̄ log
(
1 + |w|2

)
= ∂

(
i

1 + |w|2
n∑
s=1

wsdw̄s

)
=

=
i

1 + |w|2
n∑
s=1

dws ∧ dw̄s −
i

(1 + |w|2)2

(
n∑
s=1

w̄sdws

)
∧

(
n∑
s=1

wsdw̄s

)
.

Since both ω and J are invariant under the action of U(n+1), it is enough to
check that g is positive definite at one point, say p = [1, 0, . . . , 0], i.e. w = 0.

But ω|p = i
n∑
s=1

dws ∧ dw̄s, and so g|p =
n∑
s=1

dwsdw̄s, which shows that g is

positive definite. This Kähler metric is called the Fubini-Study metric.
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Remark 4.1.5. Recall that CPn = S2n+1/S1. The Fubini-Study metric is the
quotient metric of the round metric on S2n+1.

Once we have these two basic examples, we obtain plenty more, since:

Proposition 4.1.6. A complex submanifold of Kähler manifold, equipped with
the induced metric, is Kähler.

Proof. Let (N, J, gN ) ⊂ (M,J, gM ) be as in the statement. The fundamental
form ωN of gN is just the pullback (restriction) of the fundamental form ωM of
gM , hence closed.

Therefore every complex projective manifold, as well as a complex subman-
ifold of Cn (i.e. a Stein manifold), has at least one Kähler metric. Observe
also that the product of Kähler manifolds is again Kähler. On the other hand
many complex manifolds do not admit any Kähler metric. An example of an
obstruction is given by:

Proposition 4.1.7. If M is a compact Kähler manifold, then

H2q
dR(M) 6= 0 for all q ≤ n = dimCM.

Proof. Let ω be a Kähler form on M . Then ωq is a closed form, which I claim
cannot be exact. Indeed, had we ωq = dψ, then ωn = d (ψ ∧ ωn−q) and then

vol(M) =

∫
M

ωn =

∫
M

d
(
ψ ∧ ωn−q

)
= 0,

which is impossible.

Thus, for example, there are no Kähler metrics on Hopf manifolds which we
defined in Chapter 1 (these are diffeomorphic to S1 × S2n−1, n ≥ 2). Another
topological restriction is as follows:

Proposition 4.1.8. Let M be a compact Kähler manifold. Then the identity
map on q-forms induces an injective map

Hq,0

∂̄
(M)→ Hq

dR(M),

i.e. every nonzero holomorphic q-form is closed and never exact.

Proof. Let η be a holomorphic q-form. In a local unitary frame {ϕi}, we can
write it as

η =
∑
|I|=q

fIϕI , ϕI = ϕi1...iq = ϕi1 ∧ · · · ∧ ϕiq .

Then

η ∧ η =
∑
I,J

fIfJϕI ∧ ϕJ .
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On the other hand

ω =

√
−1

2

∑
i

ϕi ∧ ϕi =⇒ ωn−q = cq
∑

|K|=n−q

ϕK ∧ ϕK .

Hence

η ∧ η ∧ ωn−q = c′q
∑
|I|=q

|fI |2ϕI ∧ ϕI ∧ ϕIc ∧ ϕIc ,

where Ic denotes the complement of I, since the only nonzero wedge products
arise when K ∩ I = ∅ and K ∩ J = ∅, which implies that I = J . Therefore

η ∧ η ∧ ωn−q = c′′q

∑
|I|=q

|fI |2
ωn.

In particular, if η 6= 0, then the integral of η ∧ η ∧ ωn−q over M is nonzero. If,
however, η = dψ, then

η ∧ η ∧ ωn−q = d
(
ψ ∧ η ∧ ωn−q

)
,

since dω = 0 and dη = d
(
dψ
)

= 0, and we obtain a contradiction. Therefore a
nonzero holomorphic form cannot be exact. To show that it is closed, observe
that dη = (∂ + ∂̄)η = ∂η, which means that dη is an exact holomorphic (q+ 1)-
form, and the previous argument implies that dη = 0.

4.2 Hodge decomposition

The last result is a particular case of a much stronger fact, which is known as
the Hodge decomposition.

Theorem 4.2.1. On a compact Kähler manifold, the following relations hold:

Hr
dR(M,C) =

⊕
p+q=r

Hp,q

∂̄
(M), Hp,q

∂̄
(M) = Hq,p

∂̄
(M).

Remark 4.2.2. Thus, on a compact Kähler manifold (in particular on any pro-
jective manifold), the Dolbeault cohomology can be viewed as a refinement of
the the de Rham cohomology.

Remark 4.2.3. 1) In particular, all odd Betti numbers b2s+1(M) = dimH2s+1
dR (M)

are even.

2) The theorem fails badly for noncompact Kähler manifolds. Recall that we
showed (example 1.6.7) that dimH0,1

∂̄

(
C2\{0}

)
= ∞. On the other hand:

H1
dR

(
C2\{0}

)
= 0.
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Outline of the proof. The proof is completely analogous to that of the Rieman-
nian Hodge theorem. I shall outline it, since I am not sure that everyone took
the course “Mannigfaltigkeiten”.

Let V be a vector space with an inner product. There is an induced inner
product on each tensor power V ⊗k, k ≥ 1, and, by restriction, on each exterior
power ΛkV . If (e1, . . . , en) is an orthonormal basis on V, then {ei1∧· · ·∧eik | 1 ≤
i1 ≤ · · · ≤ ik ≤ n} is an orthonormal basis of ΛkV . If (M, g) is a Riemannian
manifold, then we can do this on each T ∗xM , so we get an inner product on each
ΛkT ∗xM . If (M, g) is oriented, i.e. we have a nonvanishing volume form dV , and
compact, then we can define an inner product on differential forms in Ωk(M) :

〈α, β〉 =

∫
M

〈α|x, β|x〉dV.

We seek, in every cohomology class in Hk
dR(M), a representative with the small-

est norm. How to find such an element?

We can view each cohomology class [ψ] ∈ Hk
dR(M) as an affine space P =

{ψ + dη | η ∈ Ωk−1(M)}. If M is compact, then Ωk(M) with the above inner
product is a pre-Hilbert space1, and were P a closed subspace, we could find an
element of the smallest norm by the orthogonal projection, using the decompo-

sition Ωk(M) = dΩk−1(M)⊕
(
dΩk−1(M)

)⊥
. The orthogonal projection can be

expressed via the adjoint operator to d:

‖ψ + dη‖2 = ‖ψ‖2 + ‖dη‖2 + 2〈ψ, dη〉 = ‖ψ‖2 + ‖dη‖2 + 2〈d∗ψ, η〉.

Therefore, if d∗ψ = 0, then ψ has the smallest norm in P . Thus we conclude
that cohomology classes should be represented by forms ψ such that dψ = 0
and d∗ψ = 0. We need to understand the operator

d∗ : Ωk+1 → Ωk.

Let us look again at the inner product on ΛkV . If (e1, . . . , en) is an oriented
orthonormal basis, then we can define a linear isomorphism

∗ : ΛkV → Λn−kV via

ω ∧ ∗τ = 〈ω, τ〉 e1 ∧ · · · ∧ en ∀ω, τ ∈ ΛkV.

The operator ∗ is called the Hodge dual. In particular, ∗1 = e1∧· · ·∧en, 〈∗τ1, ∗τ2〉 =
〈τ1, τ2〉, ∗ ◦∗ = (−1)k(n−k) on ΛkV . Now observe that ∗d∗ maps Ωk+1(M) to
Ωk(M) and

〈dα, β〉dV = dα ∧ ∗β = d(α ∧ ∗β)− (−1)kα ∧ d ∗ β,

1i.e. it does not have be complete, just as continuous functions on a interval with the
L2-norm.



78 CHAPTER 4. KÄHLER MANIFOLDS

so that

〈dα, β〉dV − d(α ∧ ∗β) = (−1)k+1α ∧ ∗β = (−1)k+1(−1)k(n−k)α ∧ ∗2d ∗ β =

= −(−1)nk〈α, ∗d ∗ β〉dV.

After integration we obtain

〈dα, β〉 = 〈α, (−1)nk+1 ∗ d ∗ β〉,

which means that d∗ = (−1)nk+1 ∗ d∗ is the adjoint operator of d, called the
codifferential. A form ω such that d∗ω = 0 is called co-closed.

Thus we need to show that, on a compact oriented Riemannian manifold
(M, g), any cohomology class has a representative ψ with d∗ψ = 0 (and dψ = 0).
Observe that such a form automatically satisfies (dd∗+d∗d)ψ = 0. The operator

∆ = ∆g = dd∗ + d∗d : Ωk(M)→ Ωk(M)

is called the Riemannian Laplacian, or the Laplace-Beltrami operator. On func-
tions in Rn:

∆f = (dd∗ + d∗d)f = d∗df = − ∗ d ∗ df = − ∗ d ∗

 n∑
j=1

∂f

∂xj
dxj


= − ∗ d

 n∑
j=1

∂f

∂xj
∗ dxj

 =
d∗dxj=0

− ∗

 n∑
i,j=1

∂2f

∂xj∂xi
dxi ∧ ∗dxj


= − ∗

n∑
j=1

∂2f

∂x2
j

dV =
∗dV=1

−
n∑
j=1

∂2f

∂x2
j

.

In general, if a Riemannian metric in local coordinates has a form g =
∑
i,j

gijdxidxj ,

then

∆gf = − 1√
|g|

∑
i,j

(
∂

∂xi

(√
|g| gij ∂f

∂xj

))
,

where [gij ] = [gij ]
−1 and |g| = det[gij ]. A form ψ such that ∆ψ = 0 is called

harmonic. Clearly dψ = 0 and d∗ψ = 0 imply that ψ is harmonic. On a compact
manifold we also have the converse:

Lemma 4.2.4. If M is compact, then any harmonic form ψ satisfies dψ =
d∗ψ = 0.

Proof.

0 =

∫
M

〈∆ψ,ψ〉dV =

∫
M

〈dd∗ψ + d∗dψ, ψ〉dV =

∫
M

(
|dψ|2 + |d∗ψ|2

)
dV.
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Corollary 4.2.5. A harmonic function on an oriented compact connected Rie-
mannian manifold is constant.

Let Hk∆(M) denote the vector space of harmonic k-forms, i.e:

Hk∆(M) = {ψ ∈ Ωk(M) | ∆ψ = 0}.

Theorem 4.2.6 (Hodge–de Rham). On a compact oriented Riemannian man-
ifold (M, g) we have

Ωk(M) = Hk∆(M)⊕ dΩk−1(M)⊕ d∗Ωk+1(M),

where the summands are mutually orthogonal with respect to 〈·, ·〉.

Before discussing a proof, let us look at some applications:

Corollary 4.2.7. The natural map f : Hk∆(M)→ Hk
dR(M), given by ψ 7−→ [ψ],

is an isomorphism.

Proof. Since dψ = 0, the map is well-defined. Since Hk∆ is orthogonal to exact
forms, the kernel of f is trivial. Finally, let [ω] ∈ Hk

dR(M) and decompose
ω = ωH + dλ+ d∗µ, where ωH is harmonic. Then

0 = 〈dω, µ〉 = 〈dd∗µ, µ〉 = 〈d∗µ, d∗µ〉.

Hence d∗µ = 0 and [ω] = [ωH+dλ] = [ωH ], which means that f is surjective.

Corollary 4.2.8 (Poincaré duality). On a compact oriented n-manifold M

Hk
dR(M) ' Hn−k

dR (M).

Proof. Put any Riemannian metric on M . The corresponding Hodge dual op-
erator ∗ gives an isomorphism Hk∆(M) ' Hn−k∆ (M).

Remark 4.2.9. This isomorphism depends on the choice of a Riemannian metric
on M . On a connected M , a better statement is that there exists a natural
isomorphism Hk

dR(M) ' Hn−k
dR (M)∗, given by the pairing (φ, ψ) 7→

∫
M
φ ∧ ψ.

Idea of a proof of the Hodge-de Rham theorem: It is clear that the three sum-
mands Hk∆(M), dΩk−1(M), d∗Ωk+1(M) are mutually orthogonal: if ω is har-
monic, then 〈ω, dϕ〉 = 〈d∗ω, ϕ〉 = 0 and similarly 〈ω, d∗µ〉 = 0. Moreover
〈dϕ, d∗µ〉 = 〈ddϕ, µ〉 = 0.

The hard part is to show that the direct sum is all of Ωk(M). The solution is

to complete Ωk(M) with respect to a norm
s∑
i=0

∣∣∇iψ∣∣2, where ∇ is the covariant

derivative, for some high order s. This is the Sobolev space W k
s (M), and it is a

Hilbert space.
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The Laplacian extends to a Fredholm operator2

∆s : W k
s (M)→W k

s−2(M) with Ker ∆s = Ker ∆,

which means that every “Sobolev class” harmonic form is smooth. We now have
a well defined closed subspace Y = (Ker ∆s)

⊥ ⊂ W k
s (M) and we need to show

that

Y ∩ Ωk(M) = dΩk−1(M)⊕ d∗Ωk+1(M).

We observe that

Y = Im ∆∗s : W k
s−2(M)→W k

s (M),

but on smooth forms ∆∗s = ∆ (since ∆ is self-adjoint), and therefore any smooth
form orthogonal to Ker ∆ lies in the image of ∆, i.e.

ψ = ∆u = (dd∗ + d∗d)u = d(d∗u) + d∗(du) ∈ dΩk−1(M)⊕ d∗Ωk+1(M). 2

We can now obtain an analogous decomposition on a compact hermitian
manifold (M, g, J) using the operator ∂̄. We define the formal adjoint

∂̄∗ : Ωp,q+1(M)→ Ωp,q(M)

and the ∂̄-Laplacian ∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗. The key facts are:

• there is a natural orientation on a complex manifold;

• there is a hermitian inner product on each Ωp,q(M);

• the Hodge star maps Ωp,q(M) to Ωn−q,n−p(M), where n = dimCM ;

• since dimRM is even, ∗2 = (−1)p+q;

• ∂̄∗ = − ∗ ∂∗.

A differential form ϕ satisfying ∆∂̄ ϕ = 0 is called ∂̄-harmonic. Again, on a
compact M , ∆∂̄ ϕ = 0 if and only if ∂̄ϕ = 0 and ∂̄∗ϕ = 0. We denote by
Hp,q∆ (M) the space of ∂̄-harmonic forms of type (p, q).

Theorem 4.2.10 (Hodge decomposition for the Dolbeault cohomology). On a
compact hermitian manifold (M, g, J):

Ωp,q(M) = Hp,q∆ (M)⊕ ∂̄Ωp,q−1(M)⊕ ∂̄∗Ωp,q+1(M),

where the summands are orthogonal with respect to the global hermitian product
〈·, ·〉.

Proof. The proof is completely analogous to that of the Hodge–de Rham theo-
rem.

2i.e. a bounded linear operator with finite-dimensional kernel and cokernel.
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Corollary 4.2.11. On a compact complex n-dimensional manifold M

Hp,q

∂̄
(M) ' Hn−q,n−p

∂̄
(M).

Proof. The same as in Corollary 4.2.8.

Remark 4.2.12. In addition, complex conjugation induces an antilinear isomor-
phism Hp,q

∂̄
(M) ' Hq,p

∂̄
(M).

On a hermitian manifold (M, g, J) we have defined two Laplacians: the
Riemannian ∆g and the complex ∆∂̄ . In general, there is no relation between
harmonic and ∂̄-harmonic forms (otherwise we would have a relation between
the de Rham and the Dolbeault cohomology). However:

Proposition 4.2.13. If (M, g, J) is a Kähler manifold, then ∆g = 2∆∂̄ .

Proof. Both Laplacians, when written in local coordinates, involve only first
derivatives of the metric. Therefore in normal Kähler coordinates (complex

coordinates in which the metric is Euclidean +O(|z|2)) around a point p, the
two Laplacians have the form

∆g−euclidean +O(|z|2) and ∆∂̄−euclidean +O(|z|2).

A simple calculation shows that ∆g−euclidean = 2∆∂̄−euclidean, and so ∆g|p =
2∆∂̄ |p. Since p is arbitrary, the result follows.

Remark 4.2.14. This proof illustrates a general method of proving many results
for Kähler manifolds. Any identity which holds on Cn, and it involves only the
metric and its first derivatives, is valid on any Kähler manifold.

On a compact Kähler manifold, we now obtain the Hodge relations from this
proposition, the Hodge–de Rham theorem and theorem 4.2.10.

Further reading:

(i) As we have seen, not every complex manifold admits a Kähler metric.
One can ask whether there are weaker conditions on a hermitian metric,
which can be satisfied on any (compact) complex manifold. An example
of such are the Gauduchon metrics, where the fundamental form ω
satisfies ∂∂̄ωn−1 = 0 (n = dimCM). There exists a Gauduchon metric in
every conformal class of a given hermitian metric. Examples of stronger
(but weaker than Kähler) conditions are: ∂∂̄ωn−2 = 0 (astheno-Kähler),
∂∂̄ω = 0 (strong Kähler with torsion or pluriclosed); they can no longer
be fulfilled on an arbitrary complex manifold.
A nice paper on astheno-Kähler manifolds is: A. Fino and A. Tomassini,
“On Astheno-Kähler metrics”, J. London Math. Soc. 83 (2011), 290–308,
also at arXiv:0806.0735.
For a relation between Gauduchon metrics and Aeppli cohomology (see
(iii) below): R. Piovani, A. Tomassini, “Aeppli cohomology and
Gauduchon metrics”, Complex Anal. Oper. Theory 14, 22 (2020).
https://doi.org/10.1007/s11785-020-00984-6, also at arXiv:1909.02842.
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(ii) For a more detailed proof of the Hodge theorem see, e.g. Griffiths &
Harris.

(iii) The Hodge theorem can be interpreted as saying than on compact
Kähler manifolds de Rham cohomology can be computed from the
Dolbeault cohomology. There are several other cohomology theories on
complex manifolds, which on non-Kähler manifolds are closer to the de
Rham cohomology than the Dolbeault cohomology. Two (relatively)
important ones are the Aeppli cohomology and the Bott-Chern
cohomology. See the thesis of D. Angella “Cohomological aspects of
non-Kähler manifolds”, arXiv:1302.0524, in particular Theorem 1.25.

4.3 Kodaira-Serre duality and Kodaira-Akizuki-
Nakano vanishing theorem

Let E be a holomorphic vector bundle on a compact complex manifold M .
Recall (§2.2, in particular Remark 2.2.7) that we have a well-defined operator
∂̄ : Ωp,q(E) → Ωp,q+1(E) satisfying ∂̄2 = 0, and, consequently, well-defined
Dolbeault cohomology groups Hp,q

∂̄
(M,E). If we now choose hermitian metrics

on M and on E, then we obtain a hermitian metric on any Λp,q(E) = Λp,q(M)⊗
E. We can therefore define an inner product on Ωp,q(E):

〈φ, ψ〉 =

∫
M

〈φ|m, ψ|m〉dV.

We also have an operator

∧ : Λp,q(E)× Λr,t(E)→ Λp+t,q+r(M), (η ⊗ s) ∧ (η′ ⊗ s′) = 〈s, s′〉η ∧ η′.

We can now define the E-star operator ∗E : Λp,q(E) → Λn−q,n−p(E) by the
relation:

〈φ, ψ〉 =

∫
M

φ ∧ ∗Eψ, ∀φ ∈ Λp,q(E).

Again we obtain an adjoint operator ∂̄∗ = − ∗E ∂ ∗E on E-valued differential
forms, and can define the ∂̄-Laplacian as before. We have the space Hp,q∆ (M,E)
of harmonic (p, q)-forms, and the proof of the Hodge theorem goes through
without any essential changes. Therefore

Hp,q

∂̄
(M,E) ' Hp,q∆ (M,E), ∀ p, q. (4.3.1)

The corresponding “Poincaré duality” statement (cf. Corollaries 4.2.8 and 4.2.11)
reads now:

Hp,q

∂̄
(M,E) ' Hn−q,n−p

∂̄
(M,E).

As in Remark 4.2.9, this isomorphism depends on the choice of metrics on M
and on E. If M is connected, we can use instead a pairing between E-valued
and E∗-valued differential forms, and obtain a canonical isomorphism:

Hp,q

∂̄
(M,E) ' Hn−p,n−q

∂̄
(M,E∗)∗.
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Using the Dolbeault theorem for E-valued forms (Theorem 2.4.12), we can
rephrase this as follows (from now on, I shall omit the “check” over cohomology
groups of sheaves):

Theorem 4.3.1 (Kodaira-Serre duality). Let E
π→M be a holomorphic vector

bundle on a connected compact complex manifold. There exist natural isomor-
phisms

Hq
(
M,Hp,0(E)

)
' Hn−q(M,Hn−p,0(E∗)

)∗
.

In particular, for p = 0:

Hq
(
M,O(E)

)
' Hn−q(M,O(E∗ ⊗KM )

)∗
,

where O(E) denotes the sheaf of holomorphic sections of E. 2

Example 4.3.2. Let C be a (connected) compact Riemann surface, i.e. a com-
pact complex manifold of dimension 1. The Kodaira-Serre duality implies that
H0(C,O(KC)) ' H1(C,O)∗, i.e. the dimension of the space of global holomor-
phic 1-forms equals the dimension of H1(C,O) ' H0,1

∂̄
(C). Since C is Kähler

(any hermitian metric is Kähler by dimensional reasons), the Hodge relations
imply that dimH0,1

∂̄
(C) = 1

2b1(C). If you think a moment about a 2-dimensional

compact real manifold with g holes, you can see that g = 1
2b1(C). Therefore

the dimension of the space of global holomorphic 1-forms is equal to the genus
of C.

In general, dimH0(C,O(KC)) is called the arithmetic genus of C, and for
more general (singular) algebraic curves it does not have to be equal to the
topological genus (indeed, the latter may be not well defined).

Recall now (Definition 3.2.9) that we introduced the concept of positivity
(or negativity) of curvature of a Chern connection on a hermitian holomorphic
vector bundle. We consider the case of a line bundle, and call a holomorphic
line bundle L positive if it admits a hermitian metric such that the curvature of
the corresponding Chern connection is positive. We shall prove:

Theorem 4.3.3 (Kodaira-Akizuki-Nakano vanishing theorem). Let L→M be
a positive line bundle on an n-dimensional compact complex manifold. Then

Hq
(
M,Hp,0(L)

)
= 0 if p+ q > n.

Remark 4.3.4. The Ricci form of a Chern connection is always closed. Therefore,
if the Ricci form is positive, then it defines a Kähler metric. Consequently, a
manifold which admits a positive line bundle is Kähler.3

Before proving the theorem we need some preparation. We define an oper-
ator4 L : Ωp,q(M)→ Ωp+1,q+1(M) by L(η) = η ∧ ω, and its adjoint

Λ = L∗ = ∗−1 ◦ L ◦ ∗ : Ωp,q(M)→ Ωp−1,q−1(M).
3Later we shall see that it is even projective.
4known as Lefschetz operator; Λ is known as the dual Lefschetz operator.



84 CHAPTER 4. KÄHLER MANIFOLDS

Lemma 4.3.5 (Kähler identities). Let M be a complex manifold equipped with
a Kähler metric g. Then the following identities hold true:

(i) [Λ, L] = (n− p− q) Id;

(ii) [∂̄, L] = [∂, L] = 0 and [∂̄∗,Λ] = [∂∗,Λ] = 0;

(iii) [∂̄∗, L] = i∂, [∂∗, L] = −i∂̄ and [Λ, ∂] = i∂̄∗, [Λ, ∂̄] = −i∂∗.

Proof. We are going to prove (ii) and (iii). The proof of (i) requires a substantial
detour into representation theory; see Griffiths and Harris, pp. 118–121, for
details.
We compute for α ∈ Ωp,q(M):

[∂̄, L](α) = ∂̄(ω ∧ α)− ω ∧ ∂̄α = (∂̄ω) ∧ α+ ω ∧ ∂̄α− ω ∧ ∂̄α = 0,

since ∂̄ω = 0 (ω is closed), and similarly for [∂, L]. Now

[∂̄∗,Λ](α) = [− ∗ ∂∗, ∗−1L∗](α) = − ∗ ∂L ∗ α+ ∗−1L ∗2 ∂ ∗ α =

= − ∗ ∂L ∗ α+ ∗L∂ ∗ α = − ∗ [∂, L] ∗ α = 0,

and similarly for the last identity in (ii).
For (iii), notice first that the second identity is obtained by conjugation

from the first one, and the remaining two are just the adjoints of the first two.
Therefore we only need to prove the first identity [∂̄∗, L] = i∂. Since this identity
involves only the metric and its first derivatives, it is enough to prove it on Cn
(cf. Remark 4.2.14). Moreover, since both sides are C-linear, we only need to
check the identity on monomials of the form α = fdzI ∧ dz̄J , where I, J are
multi-indices.

Now, on Cn, we have in standard coordinates ω = i
2

∑n
i=1 dzi ∧ dz̄i and

∂̄∗α = −2
∑
k

∂f

∂zk
i ∂
∂̄z̄k

(dzI ∧ dz̄J),

where i ∂
∂̄z̄k

denotes interior multiplication (contraction)5. Then:

[∂̄∗, L]α = ∂̄∗(ω ∧ α)− ω ∧ ∂̄∗α

= −2
∑
k

∂f

∂zk
i ∂
∂̄z̄k

(ω ∧ dzI ∧ dz̄J) + 2
∑
k

∂f

∂zk
ω ∧ i ∂

∂̄z̄k

(dzI ∧ dz̄J)

= −2
∑
k

∂f

∂zk

(
(i ∂
∂̄z̄k

ω) ∧ dzI ∧ dz̄J + ω ∧ i ∂
∂̄z̄k

(dzI ∧ dz̄J)− ω ∧ i ∂
∂̄z̄k

(dzI ∧ dz̄J)
)

= −2
∑
k

∂f

∂zk
(i ∂
∂̄z̄k

ω) ∧ dzI ∧ dz̄J = −
∑
k

i
∂f

∂zk
dzk ∧ dzI ∧ dz̄J = i∂α,

where we used i ∂
∂z̄k

ω = − i
2dzk.

5Recall the identity iX(α ∧ β) = (iXα) ∧ β + (−1)degαα ∧ (iXβ).
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We now extend the operators L and Λ to act on forms with values in a
holomorphic hermitian vector bundle:

L(η ⊗ s) = (ω ∧ η)⊗ s, η ∈ Ωp,q(M), s ∈ H0(E),

and similarly for Λ.

Lemma 4.3.6. Let D be the Chern connection on a holomorphic hermitian
vector bundle E over a Kähler manifold M . Then [Λ, ∂̄] = −i

(
D1,0

)∗
.

Proof. Choose a local unitary frame on E, and let A be the connection matrix
for D in this frame. Then

D1,0 = ∂ +A1,0, D0,1 = ∂̄ +A0,1,

and the ∂̄ in the desired formula is D0,1 (i.e. the holomorphic structure on E).
It follows that (

D1,0
)∗

= ∂∗ − (A1,0)∗.

Hence

[Λ, D0,1] + i
(
D1,0

)∗
= [Λ, ∂̄] + [Λ, A0,1] + i∂∗ − i(A1,0)∗ = [Λ, A0,1]− i(A1,0)∗,

where we used the Kähler identity from Lemma 4.3.5(iii). For any p ∈ M we
can find a local unitary frame such that the connection matrix A is zero at p.
Therefore the left-hand side of the last formula vanishes identically on M .

Proof of the Kodaira-Akizuki-Nagano theorem. Owing to (4.3.1) and to Dolbeault’s
theorem (Prop. 2.4.12) we have Hq

(
M,Hp,0(L)

)
= Hp,q∆ (M,L). The assump-

tion implies that there exists a hermitian metric on L such that ω = iRD is
the fundamental form of a Kähler metric on M . Therefore it is enough to
show that there are no nonzero harmonic L-valued forms of degree > n. Let
η ∈ Hp,q∆ (M,L). Then

RD ∧ η = D2η = (D1,0∂̄ + ∂̄D1,0)η = ∂̄D1,0η,

since ∂̄η = 0. Therefore

i〈ΛRD ∧ η, η〉 = i〈Λ∂̄D1,0η, η〉 =
Lemma 4.3.6

i
〈(
∂̄Λ− i(D1,0)∗

)
D1,0η, η

〉
=

= i〈ΛD1,0η, ∂̄∗η〉+ 〈D1,0η,D1,0η〉 =
∂̄∗η=0

〈D1,0η,D1,0η〉 ≥ 0.

Similarly

i〈RD ∧ Λη, η〉 = i〈(D1,0∂̄ + ∂̄D1,0)Λη, η〉 = i〈D1,0∂̄Λη, η〉+ i〈D1,0Λη, ∂̄∗η〉 =

= i〈D1,0∂̄Λη, η〉 = i
〈
D1,0

(
Λ∂̄ + i(D1,0)∗

)
η, η
〉

= −〈D1,0(D1,0)∗η, η〉 =

= −〈(D1,0)∗η, (D1,0)∗η〉 ≤ 0.
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Since iRD = ω, the operator iRD ∧ ( · ) is the Lefschetz operator L, and we
obtain

0 ≤ i〈ΛRD ∧ η, η〉 − i〈RD ∧ Λη, η〉 = 〈[Λ, L]η, η〉 =
Lemma 4.3.5

(n− p− q)‖η‖2.

Hence p+ q > n implies that η = 0.

Remark 4.3.7. Using the Kodaira-Serre duality, we conclude that if L
π→ M is

a negative line bundle, then Hq
(
M,Hp,0(L)

)
= 0 if p+ q < n.

Example 4.3.8. Observe that the Fubini-Study metric on CPn is nothing else but
iRD, whereD is a Chern connection on the hyperplane bundleO(1) (cf. Example
3.2.7). Therefore O(1) is a positive line, and so are its positive tensor powers
O(m), m ≥ 1. It follows from Theorem 4.3.3 that Hq

(
CPn,Hp,0 ⊗O(m)

)
= 0

for m > 0 and p + q > n. In particular, since Hn,0 = KCPn = O(−1− n) from
Prop. 2.1.4, Hq

(
CPn,O(m)

)
= 0 for q > 0 and m ≥ −n. Using the Kodaira-

Serre duality, we can deduce that Hq
(
CPn,O(m)

)
= 0 if the integers n, q,m

satisfy one of the following: (i) 0 < q < n; (ii) q = 0, m < 0; (iii) q = n,
m > −n− 1.

The remaining cohomology groups are also easily computed: as in Ex. 1(b)
in Homework 4, one shows that H0

(
CPn,O(m)

)
, m > 0, is isomorphic to the

vector space of homogeneous polynomials of degree m in n + 1 variables. The
Kodaira-Serre duality computes then Hn

(
CPn,O(m)

)
(m > −n− 1).

Remark 4.3.9. I have already mentioned that on CPn, n > 1, not every vector
bundle splits into a direct sum of line bundles. First of all observe that any
line bundle on CPn is of the form O(k) for some k ∈ Z. The argument here is
the same as for CP1 (Prop. 3.4.3) since H1

dR(CPn) = 0 and H2
dR(CPn) ' C '

H1,1

∂̄
(CPn). The last example gives now a necessary cohomological condition for

a vector bundle E
π→ CPn to split: Hq

(
CPn, E ⊗O(j)

)
= 0 for 0 < q < n and

all j ∈ Z. It turns out that this condition is also sufficient. This is known as
the Horrocks criterion; see the book by Okonek et al., cited at the end of §2.1.

Remark 4.3.10. In §3.4 we showed that if a complex manifold satisfies the global
∂∂̄-lemma, then the first Chern class of any vector bundle can be represented
by the Ricci curvature of a Chern connection. Definition 3.2.9 can be used for
arbitrary (1, 1)-forms, and we say that c1(L) > 0 if there is a form φ such that
[φ] = c1(L) and −iφ > 0. Therefore, if the global ∂∂̄-lemma holds on M , then
a line bundle L on M is positive if and only if c1(L) > 0. In the homework
you are asked to prove that the global ∂∂̄-lemma holds on any compact Kähler
manifold. Therefore we can rephrase the assumption in the Kodaira-Akizuki-
Nakano theorem as: M is Kähler and c1(L) > 0.

Further reading:

(i) For other vanishing theorems see §VII.1-VII.9 of Demailly’s book, cited
at the end of Chapter 1.
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(ii) Those of you who are more algebraic-minded, may want to ask (and
some of you did) which results of the last two sections can be proved
without recourse to analysis (for projective manifolds). Clearly not those
where differential operators are essential in the statement, e.g. Theorem
4.2.6. But what about the Hodge decomposition theorem (Theorem
4.2.1)? Using Dolbeault’s theorem, this can be rephrased without
mentioning the operator ∂̄. The answer is yes, at least for the first
relation in the statement (i.e. the decomposition, not the one about
conjugation). I believe it was Grothendieck who first suggested to prove
it using l-adic cohomology, and this was done 20 years later by Deligne
and Illusie (in 1987). The same methods lead to an algebraic proof of the
Kodaira-Akizuki-Nakano vanishing theorem. A nice clear reference (but
probably far beyond the scope of any course offered by the Institute for
Algebraic Geometry; maybe a seminar?) is the book Lectures on
vanishing theorems by H. Esnault and E. Viehweg (Birkhäuser 1992).

The Kodaira-Serre duality has many algebraic proofs, which can be
found in most textbooks on algebraic geometry, e.g. in Hartshorne.

4.4 Holomorphic sectional curvature

The curvature of a connection D on a vector bundle E can be viewed as a 2-
form with values in Hom(E,E). In the special case E = TM , we can view the
curvature as a (3, 1)-tensor (Riemann curvature tensor):

RD : TM × TM × TM → TM, (X,Y, Z) 7−→ RD(X,Y )Z.

If D is the Levi-Civita connection of a Riemannian metric g, then one defines the
sectional curvature, which associates a scalar to each tangent plane: if X,Y ∈
TpM are orthonormal, then the sectional curvature of the plane π spanned by
X and Y is defined by

K(π) = K(X ∧ Y ) = g(RD(X,Y )Y,X).

K(π) can be interpreted as the Gaussian curvature at p of the (immersed) 2-
dimensional submanifold of M obtained by taking all geodesics with tangent
directions belonging to π. In the course “Riemannian Geometry” we have seen
that K determines RD, and its study leads to many interesting topics and re-
sults: spaces of constant sectional curvature, pinching theorems, etc.

On a Kähler (or more generally, hermitian) manifold (M, g, J) there are
special planes in tangent spaces: those invariant under J , i.e. having a basis
X, JX. We define the holomorphic sectional curvature of (M, g, J) to be the
sectional curvature restricted to the complex planes TpM :

K(X ∧ JX) = g(RD(X,JX)JX,X), with g(X,X) = 1.



88 CHAPTER 4. KÄHLER MANIFOLDS

An argument similar to that for the ordinary sectional curvature shows that
on a Kähler manifold the holomorphic sectional curvature also determines the
Riemannian curvature RD.6

The only complete simply-connected n-dim Riemann manifolds with con-
stant sectional curvature are Sn, Rn, and the hyperbolic space Hn. We now
ask for a similar classification of Kähler manifolds with constant holomorphic
sectional curvature.

Theorem 4.4.1. The Fubini-Study metric on CPn has constant (positive) holo-
morphic sectional curvature.

Proof. Recall that the fundamental form of the Fubini-Study metric is given by

ω = i∂∂̄ log |z|2,

where z ∈ Cn+1\{0} represents [z] ∈ CPn. Hence, as observed before, the
Fubini-Study metric is invariant under the transitive action of U(n+1) on CPn.
I claim that U(n + 1) actually acts transitively on the space of all complex
tangent planes (“holomorphic lines”) in TCPn.

At a point p ∈ CPn, the space of all complex lines in TpCPn is P(TpCPn) '
CPn−1. The tangent space TpCPn is identified, from the definition of CPn,
with Cn+1/L, where L = [p]. Hence a line in TpCPn corresponds to a 2-
dimensional subspace E of Cn+1 such that L ⊂ E. Therefore the total space of
all holomorphic lines in TCPn, i.e. P(TCPn), is the manifold F1,2 of so-called
(1, 2)-flags:

L ⊂ E ⊂ Cn+1, where dimL = 1, dimE = 2.

It is a homogeneous manifold: the Gram-Schmidt orthogonalisation implies that

F1,2 = U(n+ 1)/
(
U(1)× U(1)× U(n− 1)

)
,

and hence U(n + 1) does act transitively on the space of all complex tangent
planes. Therefore the holomorphic sectional curvature of the Fubini-Study met-
ric is constant. In order to see that it is positive, consider a CP1 ⊂ CPn, say
P(〈e0, e1〉) ⊂ CPn. It is the fixed point set of the subgroup(

Id2 0
0 U(n− 1)

)
of U(n + 1), and therefore totally geodesic. This means that the sectional
curvature of π ' TpCP1 ⊂ TpCPn is equal to the sectional curvature of π
in CP1. But the latter is just the Gaussian curvature of the 2-sphere, hence
positive.

What about constant negative holomorphic sectional curvature? This would
be an analogue of the hyperbolic space Hn and is even easier to construct: take
the open unit ball

Dn = {z = (z1, . . . , zn) ∈ Cn; |z| < 1}
6For a proof see Prop. 7.1 in Ch. IX of Kobayashi and Nomizu.
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and define a Kähler metric by the global Kähler potentialK(z) = − log
(

1− |z|2
)

,

i.e. ω = i∂∂̄K. The metric is easily computed as

ds2 =

(1− |z|2)
∑
s
dzsdzs +

(∑
s
zsdzs

)(∑
s
zsdzs

)
(

1− |z|2
)2 .

Observe that this is clearly U(n)-invariant. It is actually U(n, 1)-invariant,
where the group U(n, 1) is defined as

U(n, 1) =

{
A ∈ GL(n+ 1,C)

∣∣∣∣∣ U∗
(

Idn 0
0 −1

)
U =

(
Idn 0
0 −1

)}
,

i.e. the group of linear transformations preserving the indefinite hermitian dis-

tance
n∑
i=1

|zi|2 − |zn+1|2. If we write

U =

(
A B
C d

)
, where A ∈ Matn×n(C), B, CT ∈ Cn, d ∈ C,

then the induced fractional action on Cn(
A B
C d

)
· z =

1

Cz + d
(Az +B)

preserves Dn and ds2. Again7 U(n, 1) acts transitively on the space of all
complex tangent planes, so this metric onDn has constant holomorphic sectional
curvature. Restricting to a totally geodesic surface, which is isometric to H2,
shows that this curvature is negative. The Kähler manifold (Dn, ds

2) is called
the complex hyperbolic space, denoted CHn.

Similarly to the real case, the only complete simply connected Kähler mani-
folds with constant holomorphic sectional curvature are CPn,Cn and CHn. The
proof is also very similar to that in the real case; see Kobayashi and Nomizu,
Theorem IX.7.9.

The example of CHn suggests a construction of a large class of Kähler met-
rics. Take a bounded domain D ⊂ Cn and define

K : D → R by K(z) = − log dist(z, ∂D).

We can try and treat K as a “Kähler potential”. In general,
[
∂2K
∂zi∂zj

]
does not

have to be positive definite everywhere, but if it is (such a function K is called
a strictly plurisubharmonic function), then i∂∂̄K defines a Kähler metric. In
this case the domain D is called strictly8 Levi pseudoconvex (or just strictly
pseudoconvex). In particular, domains which are strictly convex in the usual
sense are strictly Levi pseudoconvex, so they carry a natural (complete) Kähler
metric.

7Details will be the topic of a homework question.
8sometimes “strongly”
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Holomorphic sectional curvature of submanifolds

Recall that if M is a smooth submanifold of a Riemannian manifold (N, g), then
the Levi-Civita connection of (M, g|M ) is given by the orthogonal projection of
the Levi-Civita ∇ connection on N , i.e. if we decompose ∇XY , X,Y ∈ Γ(TM),
as (∇XY )T + (∇XY )⊥, then the first term is the Levi-Civita connection of
M , and the second term is the 2nd fundamental form of M in N , denoted
by α(X,Y ). The sectional curvatures of M and N are related by the Gauss
equation:

KM (X ∧ Y ) = KN (X ∧ Y ) + g(α(X,X), α(Y, Y ))− g(α(X,Y ), α(X,Y ))

(here X and Y are orthonormal). Now suppose that (N, g) is Kähler and M is
a complex submanifold of N . Then g|M is Kähler. We have:

Proposition 4.4.2. The 2nd fundamental form of a complex submanifold M
of a Kähler manifold (N, g, J) satisfies

α(JX, Y ) = α(X, JY ) = Jα(X,Y ), ∀p ∀X,Y ∈ TpM.

Proof.

α(JX, Y ) = (∇XJY )⊥ =
J parallel

(J∇XY )⊥ =
J orthogonal

J(∇XY )⊥ = Jα(X,Y ).

The other equality follows from the symmetry of α in the two arguments.

We immediately conclude:

Corollary 4.4.3. The holomorphic sectional curvature of a complex submani-
fold M of a Kähler manifold (N, g, J) satisfies

KM (X ∧ JX) = KN (X ∧ JX)− 2g(α(X,X), α(X,X)), |X| = 1.

In particular the holomorphic sectional curvature decreases in submanifolds. 2

Observe that there is no statement corresponding to the last one for the
sectional curvature of Riemannian manifolds.

Further reading: For more on pseudoconvexity, see Chapter I of Demailly’s
book, in particular §I.7.

4.5 Kähler quotients

A fundamental construction in Riemannian geometry is that of Riemannian sub-
mersions, in particular quotients by a free, proper, and isometric group action.
A moment of thought shows that this cannot produce Kähler manifolds from
a Kähler manifold: even the dimension of the quotient may be odd. Instead,
there exists a different construction, which generalises that of the Fubini-Study
metric as S2n+1/S1.
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Let (M, g, J) be a Kähler manifold and let G be Lie group acting holomor-
phically and isometrically on M . For any element ρ of the Lie algebra g of G
we have the corresponding fundamental vector field Xρ on M :

Xρ|m =
d

ds

(
esρm

)∣∣∣
s=0

.

Since G preserves the Kähler form ω, LXρω = 0. Hence, using Cartan’s magic
formula:

0 = LXρω =
(
diXρ + iXρd

)
ω = diXρω,

since ω is closed. Therefore the 1-form iXρω is closed. We say that Xρ is
Hamiltonian if this form is exact, i.e. if there exists a function µρ ∈ C∞(M)
such that iXρω = dµρ. Suppose now that every Xρ is Hamiltonian (e.g. when
M is simply-connected). Then we obtain a map µ : M → g∗ given by:

µ(m)(ρ) = µρ(m).

We say that the G-action on M is Hamiltonian if the map µ is equivariant,
i.e. µ(g.m) = g.µ(m), where the action of G on g∗ is the coadjoint action:
(g.φ)(ρ) = φ(Adg ρ). The map µ is then called a moment map for the G-action.

Example 4.5.1. Let M = Cn+1 with its standard Kähler structure, and let
G = S1 act by the coordinatewise multiplication. The fundamental vector field
Xρ, corresponding to ρ = it ∈ u(1) is simply

(itz0, . . . , itzn),

and hence

iXρω = iXρ

( i
2

n∑
k=0

dzk∧dz̄k
)

= −1

2

n∑
k=0

tzkdz̄k−
1

2

n∑
k=0

tz̄kdzk = −1

2
td
( n∑
k=0

|zk|2
)
.

Therefore the action is Hamiltonian and the moment map is µ(z) = i
2 |z|

2 (or
i
2 |z|

2 + ic for an arbitrary c ∈ R).

We are going to prove

Theorem 4.5.2. Let (M, g, J) be a Kähler manifold with an isometric, holo-
morphic, and Hamiltonian action of a Lie group G, and a moment map µ :
M → g∗. Let c ∈ g∗ be a fixed point of the coadjoint action and suppose that the
action of G on µ−1(c) is free and proper. Then µ−1(c)/G is a Kähler manifold,
called the Kähler quotient of M by G.

Proof. We need to show two things: that c is a regular value of µ, and that
the Kähler structure descends to µ−1(c)/G. Since dµ(v)(ρ) = ω(Xρ, v) and ω is
nondegenerate, the kernel of dµ has dimension dimM −dim〈Xρ〉ρ∈g. Therefore
any point m ∈ M , at which the action is locally free, is a regular point for µ.
Consequently µ−1(c)/G is smooth.

The tangent space to µ−1(c) consists of vectors v such that ω(Xρ, v) = 0, i.e.
g(JXρ, v) = 0, for all ρ ∈ g. The tangent space to the quotient µ−1(c)/G at an



92 CHAPTER 4. KÄHLER MANIFOLDS

orbit G.m can be identified with the horizontal subspace in Tmµ
−1(c), i.e. with

vectors orthogonal to all Xρ. Therefore the tangent space to the Kähler quotient
µ−1(c)/G at G.m is identified with the subspace H of TmM orthogonal to
〈Xρ, JXρ〉ρ∈g. Since J is a pointwise isometry, J acts on H, and, consequently,
µ−1(c)/G is an almost complex manifold. Since the metric on M is Kähler,
its Levi-Civita connection ∇ commutes with J . The Levi-Civita connection
of µ−1(c)/G is just the projection of ∇ onto H, and, therefore, it commutes
with J |H . Thus the almost complex structure of µ−1(c)/G is parallel for the
Levi-Civita connection, hence integrable, and the induced metric on µ−1(c)/G
is Kähler.

Example 4.5.3. Let us return to Example 4.5.1. Choose ir ∈ g ' u(1). The set
µ−1(ir) is empty if r < 0 and a point if r = 0. Therefore the assumptions of the
theorem are satisfied only for r > 0. In this case µ−1(ir) is the sphere of radius
2r in Cn and the resulting Kähler metric on µ−1(ir)/S1 ' S2n+1/S1 ' CPn is
a constant multiple of the Fubini-Study metric.

Toric Kähler manifolds

We shall now generalise this last example to quotients of a flat CN by a torus.
Consider the standard torus TN acting on CN :(

eit1 , . . . , eitN
)
.(z1, . . . , zN ) =

(
eit1z1, . . . , e

itN zN
)
,

and let S be an (N − n)-dimensional subtorus of TN . If we perform a Kähler
quotient of CN with respect to S, then the result is a 2n-dimensional Kähler
manifold on which the quotient torus TN/S ' Tn (of half dimension) acts
isometrically, holomorphically, and has a moment map (i.e. the Tn-action is
Hamiltonian). Such a Kähler manifold is called toric.

We shall show that toric Kähler manifolds are in 1− 1 correspondence with
certain combinatorial data.

We view S as the kernel of the projection TN → Tn. Passing to Lie alge-
bras9, we have an exact sequence

0 −→ s
ι−→ RN β−→ Rn −→ 0. (4.5.1)

Denote by ui, i = 1, . . . , N , the image of the standard generator ei, i.e. ui =
β(ei). In order to be able to exponentiate this exact sequence (i.e. in order that
S is an embedded subtorus) the coordinates of each ui must be integers. The
moment map for TN is (via a calculation as in Ex. 4.5.1)

µ(z1, . . . , zN ) =
1

2

N∑
k=1

|zk|2ek + c.

9We now identify the Lie algebra of a torus with RN , rather than iRN .
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Here we identified the Lie algebra of TN with its dual using the standard inner
product on RN . The moment map for S is now just the projection of µ onto s∗,
i.e. if we write αk = ι∗(ek), where ι∗ : RN → s∗ is the projection, then

µS(z1, . . . , zN ) =
1

2

N∑
k=1

|zk|2αk + c. (4.5.2)

The constant c is of the form

c =
1

2

N∑
k=1

λkαk

for some scalars λ1, . . . , λN ∈ R. If S acts freely on µ−1
S (0), then µ−1

S (0)/S
is a smooth toric Kähler manifold M . The condition µS(z) = 0 means that

ι∗
(∑N

k=1(|zk|2 + λk)ek
)

= 0, i.e.
∑N
k=1(|zk|2 + λk)ek ∈ Ker ι∗. The sequence

dual to (4.5.1) implies then that
∑N
k=1(|zk|2 + λk)ek ∈ Imβ∗. Since

β∗(x) =

N∑
k=1

〈x, uk〉ek,

it follows that z = (z1, . . . , zk) satisfies µS(z) = 0 if and only if there exists an
x ∈ Rn such that

|zk|2 + λk = 〈x, uk〉 ∀ k = 1, . . . , N.

The point x ∈ Rn is then the image of S.z ∈M under the Tn-moment map on
the Kähler quotient M . Consider now the hyperplane Hk given by 〈x, uk〉 = λk.
Points of M which map to this hyperplane satisfy zk = 0, and hence the circle
eitk acts trivially at those points. Therefore the hyperplanes Hk are the images
of fixed point sets of circles in Tn. It follows also that such a fixed point set has
(real) codimension 2 in M and locally M ' X × R2, where S1 acts trivially on
X and in a standard way on R2. The moment map µS1 for the circle action is
then just the moment map for the action on R2 ' C, i.e. 1

2 |z|
2. It follows that

µS1 maps M to one side of the hyperplane Hk, and consequently the image of
the moment map for the Tn action on M is the intersection of half-spaces

〈x, uk〉 ≥ λk, k = 1, . . . , N.

Observe that such an intersection of half-spaces determines all the data needed
to perform a Kähler quotient: since we know the vectors uk we can determine
the subtorus S from (4.5.1), and since we know the constants λk, we know c in
(4.5.2). Therefore we can recover M from its image in Rn. Of course, if M is to
be a manifold, then the hyperplanes Hk must satisfy certain conditions. I shall
just state them here and leave a proof as an exercise or to look up.

Proposition 4.5.4. The Kähler quotient µ−1
S (0)/S constructed above is smooth

if and only if whenever m hyperplanes Hk1 , . . . ,Hkm have a nonempty intersec-
tion, then their normal vectors uk1 , . . . , ukm are part of a Z-basis of Zn (recall
that the uk have integer coordinates). In particular, at most n hyperplanes can
have a nonempty intersection. 2
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In particular, compact toric Kähler manifolds of dimension 2n are obtained
from convex polytopes in Rn, the supporting hyperplanes of which satisfy this
condition. Such polytopes are called Delzant polytopes.

Example 4.5.5. Consider the standard simplex ∆ in Rn with vertices at the
origin and the points (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). The normal vectors to the
faces of ∆ are u1 = e1, . . . , un = en, un+1 = −e1 − · · · − en. In particular, it is
a Delzant polytope. The subtorus S of Tn+1 determined by (4.5.1) has the Lie
algebra {(t1, . . . , tn+1);

∑
tkuk = 0}, i.e. t1 = t2 = · · · = tn+1. The scalars λk

are 0, . . . , 0,−1, and the moment map µS is 1
2

(
|z|2 − 1

)
. Therefore (Ex. 4.5.1)

the resulting toric Kähler manifold is CPn with its Fubini-Study metric.

Further reading: For more on (compact) toric Kähler manifolds see the two
(very well written) Appendices in the book “Moment maps and combinatorial
invariants of Hamiltonian Tn-spaces” by V. Guillemin (Birkhäuser 1994).
For a beautiful introduction to toric geometry (as part of algebraic geometry)
see “Introduction to toric varieties” by W. Fulton (Princeton University Press,
1993).



Chapter 5

Calabi-Yau and
Kähler-Einstein

This chapter is about Ricci curvature of Kähler manifolds, in particular about
finding Kähler metrics with “best” Ricci curvature.

5.1 Ricci curvature of Kähler manifolds

Recall that we have defined the Ricci form of a connection D on a complex
vector bundle as trRD and showed that it is a closed 2-form. Suppose now that
E

π→ M is a holomorphic vector bundle over a complex manifold and D is the
Chern connection of a hermitian metric h on E. Then in a local holomorphic
frame {e1, . . . , ek}:

trRD = −∂∂̄ log det[hij ], where hij = 〈ei, ej〉 = h(ei, ej).

Let now (M,J, g) be a Kähler manifold. Then we have two Ricci curvatures on
the tangent bundle of M . On the one hand we have the the above Ricci form
on E = TM , where D is the Chern connection of the Kähler metric. We shall
usually make the Ricci form real:

Definition 5.1.1. The Ricci form ρ of a Kähler manifold is defined as i trRD.
It is a real closed (1,1)-form.

On the other hand, one defines the Ricci curvature of any Riemannian metric:

Ric(X,Y ) = tr(V 7−→ R∇(V,X)Y )

where ∇ is the Levi-Civita connection. It is a symmetric (2, 0)-tensor. Equiva-
lently we can define a (1, 1)-tensor

Ric : TM → TM, g(Ric(X), Y ) = Ric(X,Y ).

The two objects are related as follows:

95
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Proposition 5.1.2. On a Kähler manifold

Ric(X,Y ) = ρ(X, JY ).

Proof. Recall the first Bianchi identity for any torsion-free linear connection:

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

Hence

Ric(X,Y ) = Ric(Y,X) = tr (V 7−→ R(V, Y )X) = tr (V 7−→ −JR(V, Y )JX)

= tr(V 7−→ (JR(Y, JX)V + JR(JX, V )Y )).

On the other hand:

−Ric(X,Y ) = − tr(V 7−→ R(V,X)Y ) = tr(V 7−→ R(X,V )Y )

= tr(JV 7−→ JR(X,V )Y ) =
tr is a

(1,1)-form

tr(JV 7−→ JR(JX, JV )Y )

=
JV 7→V

tr(V 7−→ JR(JX, V )Y ).

Therefore Ric(X,Y ) = tr(V 7−→ JR(Y, JX)V )− Ric(X,Y ) and so

Ric(X,Y ) =
1

2
tr(V 7−→ JR(Y, JX)V ).

Now choose a local orthonormal frame of TM of the form E1, JE1, E2, JE2, . . . , En, JEn.
The last formula can be rewritten as

Ric(X,Y ) =
1

2

∑
i

g(JR(Y, JX)Ei, Ei) +
1

2

∑
i

g(JR(Y, JX)JEi, JEi)

=
∑
i

g(JR(Y, JX)Ei, Ei).

On the other hand we can compute the trace of the curvature of the Chern
connection with respect to the hermitian metric

h =
∑

gpq dzp ⊗ dzq = g − iω.

Since E1, . . . , En is a unitary frame of TM , we have

trR(X,Y ) =
∑
i

h(R(X,Y )Ei, Ei) =
√
−1
∑
i

ω(R(X,Y )Ei, Ei)

= −
√
−1
∑
i

g(JR(X,Y )Ei, Ei).

Hence Ric(X,Y ) = −i trR(Y, JX) = −ρ(Y, JX) = ρ(JY,X).
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It follows (cf. p. 64) that we have the following simple formula for the Ricci
curvature of a Kähler manifold in local complex coordinates

Ric = −1

2
Re
∑
p,q

∂2 log det[gpq]

∂zp∂zq
dzpdzq.

Corollary 5.1.3. The Ricci curvature of a Kähler metric depends only on the
complex structure and on the volume form of the metric. 2

Now, if we change the Kähler metric from g to g′, then the volume form
changes from ωn to efωn for a real function f and the Ricci form will change to

ρ′ = ρ− i∂∂̄f.

In particular, the Ricci form of a Kähler metric varies in a fixed cohomology
class, which of course is 2πc1(TM) = 2πc1(M).

We may ask, as we did earlier for the hermitian vector bundles, whether
any real closed (1, 1)-form ϕ with [ϕ] = 2πc1(M) is the Ricci-form of a Kähler
metric? Equivalently, is any volume form µ the volume form of a Kähler metric?
This is the famous Calabi problem. The answer is yes, if M is compact (Yau,
1978).

Remark 5.1.4. Observe that we already know that we can find a hermitian met-
ric with prescribed Ricci curvature on any compact Kähler manifold. Indeed,
we established in §3.4 that this is true on any manifold on which the global
∂∂̄-lemma holds, i.e. any real exact (1, 1)-form is of the form i∂∂̄f . In the last
homework you showed that this lemma holds on any compact Kähler manifold.
Of course the problem finding a Kähler metric with prescribed Ricci curvature
is much harder.

Another natural condition on a Kähler metric is the Einstein equation: Ric =
λg for some constant λ (often expressed as “Ricci curvature is constant”). On
a Kähler manifold we can write this as

i trR∇ = ρ = λω.

Such metrics are called Kähler-Einstein. Observe that a metric with constant
holomorphic sectional curvature has constant Ricci curvature, so we have first
examples of Kähler-Einstein manifolds: CPn,Cn,CHn, with their standard met-
rics.

Example 5.1.5. Let M = G/H be a compact homogeneous Kähler manifold (e.g.
projective spaces, Grassmannians, or flag manifolds). On such a manifold there
is only one (up to a constant multiple) G-invariant volume form (this is the
volume form of the normal metric, discussed in the “Riemannian Geometry”
course). Hence, owing to Corollary 5.1.3, the Ricci form of any G-invariant
Kähler metric is a fixed real (1, 1)-form ρ. If one shows that ρ is positive definite,
then by taking ρ as the fundamental form of a Kähler metric, one can conclude
that M admits a unique (up to a constant multiple) G-invariant Kähler-Einstein
metric (with positive Einstein constant). This Ricci form ρ is indeed positive
definite, but a proof of this requires a substantial detour into Lie theory. See
Chapter 8 in Besse’s “Einstein manifolds (Springer, 1987).
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5.2 Calabi-Yau theorem

We have seen that the first Chern class of a Kähler manifold is represented by
1

2πρ, where ρ is the Ricci form defined in the previous section. The following
question is known as the Calabi problem:

Let M be a complex manifold. Is any closed real (1, 1)-form ϕ with [ϕ] =
2πc1(M) the Ricci form of a Kähler metric?

Yau showed in 1977 that the answer is yes if M is compact (after presenting
a (wrong) counterexample in 1973):

Theorem 5.2.1 (Calabi-Yau theorem). Let M be a compact complex manifold
which admits of a Kähler metric g with Kähler form ω. Any closed real (1, 1)-
form ϕ with [ϕ] = 2πc1(M) is the Ricci form of a unique Kähler metric g̃ in
the same Kähler class as ω (i.e. [ω] = [ω̃]).

Corollary 5.2.2. If M is a compact Kähler manifold with c1(M) = 0, then M
admits a Ricci-flat Kähler metric.

Example 5.2.3. We have seen in Example 3.4.10 that the K3-surface

S = {[z0, z1, z2, z3] ∈ CP3 | z4
0 + z4

1 + z4
2 + z4

3 = 0}

has vanishing first Chern class. Therefore S admits a Ricci-flat Kähler metric
(which is unknown explicitly).

We are going to discuss a proof of the Calabi-Yau theorem. We have seen
that the Ricci form of a Kähler metric depends only on the volume form of the
metric (once we fix the complex structure). If we change the Kähler metric
g 7−→ g′, then the volume form changes by a conformal factor

ωn 7−→ (ω′)n = efωn

for some f ∈ C∞(M) and the Ricci form changes as

ρ 7−→ ρ′ = ρ− i∂∂̄f.

Now, if [ϕ] = [ρ], then the global ∂∂̄-lemma implies that there exists an f
such that ρ − ϕ = i∂∂̄f . Moreover, any two such f, f ′ differ by a constant (on
each connected component), since their difference is harmonic. We can fix this
constant by requiring that ∫

M

efωn =

∫
M

ωn.

Observe that this last condition is automatically satisfied by any f such that
(ω′)n = efωn and [ω′] = [ω]. We therefore have an equivalent formulation of
the Calabi-Yau theorem:

The map ω′ 7−→ log (ω′)n

ωn from the space of Kähler metrics in the Kähler
class [ω] to the set {

f ∈ C∞(M) ;

∫
M

efωn =

∫
M

ωn
}
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is a bijection.

Let us now reinterpret the domain of this map: Since [ω′] = [ω], the global
∂∂̄-lemma implies that ω′ − ω = i∂∂̄u for some real function u. Again, any two
such functions differ by a constant, which we can fix by requiring that∫

M

uωn = 0.

Thus we have two spaces of smooth functions:

K =
{
u ∈ C∞(M) ; ω + i∂∂̄u > 0,

∫
M

uωn = 0
}

K′ =
{
f ∈ C∞(M) ;

∫
M

efωn =

∫
M

ωn
}

and a map Cal : K → K′ given by

Cal(u) = log
(ω + i∂∂̄u)n

ωn
.

The Calabi-Yau theorem says that Cal is a bijection (or even a diffeomor-
phism if we view K,K′ as ∞-dimensional manifolds). In local complex coordi-
nates, if the given metric g is written as

g =
∑

gpq dzpdzq,

then the map Cal is

Cal(u) = log det

[
gpq +

∂2u

∂zp∂zq

]
− log det [gpq] .

This is an example of a complex Monge-Ampère equation1. It is highly nonlinear,
but it is a single equation (unlike the general Riemannian Einstein equations).
The simplest complex Monge-Ampère equation is

det

[
∂2u

∂zp∂zq

]
= h(zp, zq)

for some (positive) function h on Cn. Finding a plurisubhamonic solution u, i.e.

one such that hermitian matrix
[

∂2u
∂zp∂zq

]
is positive-definite, means that we have

found a Kähler metric on Cn with Ricci form i∂∂̄ log h (u is a Kähler potential
of this metric). In particular, if h is constant, then a plurisubharmonic solution

1A (real or complex) Monge-Ampère equation is a second order PDE which involves the
determinant of the matrix of second derivatives. In 1781 Monge wanted to move “rubble” in
order to build a fortification, while minimising the cost. The problem can be expressed as a
real Monge-Ampère equation.
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gives a Ricci-flat Kähler metric on Cn (or on its domain of definition). The
solution u(z) = c

∑
|zp|2 gives the standard flat metric.

Returning to the proof of the Calabi-Yau theorem, we begin by showing that
the map Cal is injective (proved by Calabi in 1955):

Proposition 5.2.4. Let M be a compact complex manifold. The map Cal :
K → K′ is injective.

Proof. Suppose that ω1 and ω2 = ω1 + i∂∂̄u have the same volume form. Since
forms of even degree commute, we have

0 = ωn2 − ωn1 = (ω2 − ω1) ∧
n−1∑
k=0

ωk1 ∧ ωn−k−1
2 = i∂∂̄u ∧

n−1∑
k=0

ωk1 ∧ ωn−k−1
2

for some u ∈ K. The form σ =
n−1∑
k=0

ωk1 ∧ωn−k−1
2 is an (n− 1, n− 1)-form, which

in local coordinates can be written as∑
Mpq dz1 ∧ · · · ∧ d̂zp ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ d̂zq ∧ · · · ∧ dzn,

so that our equation becomes

0 =
∑

Mpq ∂2u

∂zp∂zq
.

Let us multiply the equation 0 = i∂∂̄u∧σ by 2u and use the identity 2i∂∂̄ = ddc,
where dc = i(∂̄ − ∂), to obtain:

0 = 2iu∂∂̄u ∧ σ = uddcu ∧ σ = d(udcu ∧ σ)− du ∧ dcu ∧ σ.

Integrating yields

0 =

∫
M

du ∧ dcu ∧ σ.

Since ∂u = du+ iJdu, we get

0 =

∫
M

du ∧ Jdu ∧ σ.

Since ω1 defines a Kähler metric, we can find a local frame of the form {e1, Je1, . . . en, Jen}
such that

ω1 =

n∑
j=1

ej ∧ Jej , ω2 =

n∑
j=1

ajej ∧ Jej ,

where aj are strictly positive local functions. It follows that

ωk1 ∧ ωn−k−1
2 = ∗

 n∑
j=1

bjkej ∧ Jej
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where bjk = (factorials)
∑

j1<···<jk
js 6=j

aj1 . . . ajk > 0. If

du =
∑

αiei +
∑

βiJei, then Jdu =
∑

αiJei −
∑

βiei, and

du ∧ Jdu ∧ σ = 〈du ∧ Jdu, ∗σ〉 ωn1 =
(∑
j,k

(α2
j + β2

j )bjk

)
ωn1 .

Hence the integrand is positive and the equation 0 =
∫
M

du ∧ Jdu ∧ σ implies

that αj = βj = 0, i.e. du = 0, so u is constant, and therefore u = 0 since∫
M

uωn1 = 0.

We now turn to the surjectivity of Cal, i.e. to the existence of solutions to
the Monge–Ampère equation. We need the following simple lemma:

Lemma 5.2.5. Let g be a Kähler metric, given in local coordinates by

g =
∑

gpq dzpdzq.

Then the ∂̄-Laplacian ∆∂̄ = 1
2∆d is given on functions by

∆∂̄ u = −
∑

gpq
∂2u

∂zp∂zq
, where

[
gpq
]

= [gpq]
−1
.

In particular, the Laplacian on Kähler manifolds does not depend on the deriva-
tives of the metric tensor.

Proof. The formula is evidently true on Cn, where gpq = δpq. Therefore it is true
in Kähler normal coordinates at any point. The right-hand side can, however,
be written as

− ∗ (i∂∂̄u ∧ ωn−1),

which means that the identity is independent of the choice of coordinates.

Returning to the surjectivity of Cal, we observe, first of all, that any solution
u to our Monge–Ampère equation automatically belongs to K, i.e. ω + i∂∂̄u

defines a Kähler metric. In local coordinates this means that
[
gpq + ∂2u

∂zp∂zq

]
is

positive definite. This is obviously true at a point p0, where u attains a local
minimum. Suppose that there exists a point p1 at which one of the eigenvalues
is nonpositive. This means that on the path from p1 to p0 there is a point at
which one of the eigenvalues is zero. But this contradicts the Monge-Ampère
equation, which can be rewritten (in local coordinates near p1) as:

det

[
gpq +

∂2u

∂zp∂zq

]
det[gpq]

−1
= ef > 0.
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Thus the problem of positivity of the metric is out of the way and we ”only”
need to solve Cal(u) = f for some given f . For this one uses the so-called
continuity method. We consider the set

I(f) = {t ∈ [0, 1] ; Cal(u) = tf has a solution} .

Since Cal(0) = 0, 0 ∈ I(f). We need to show that I(f) is open and closed. First
of all, we need to decide on a Banach space in which we seek solutions. These
are the Hölder spaces C2,α(M), α ∈ (0, 1). Recall that the C0,α-semi-norm of
a function is

‖ϕ‖′0,α = sup
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α

,

and ‖ϕ‖k,α = ‖ϕ‖Ck + max
|λ|=k

∥∥Dλϕ
∥∥′

0,α
.

Lemma 5.2.6. Let u be a C2,α-solution of Cal(u) = f , where f is smooth.
Then u is smooth.

Proof. In local complex coordinates the equation is:

log det
[
gpq +

∂2u

∂zp∂zq

]
− log det [gpq] = f.

Differentiate this with respect to any local coordinate x, and get:

tr

(
∂x

[
gpq +

∂2u

∂zp∂zq

] [
gpq +

∂2u

∂zp∂zq

]−1
)

= something smooth

After swapping the matrices under tr, and assuming that u ∈ Ck,α, k ≥ 2, this
can be written as:

−1

2
∆gu(∂xu) + (something in Ck−2,α) = smooth.

∆gu is a second order elliptic operator with Ck−2,α-bounded coefficients (owing
to Lemma 5.2.5). The usual Schauder estimates2 imply now that ∂xu ∈ Ck,α,
i.e. u ∈ Ck+1,α, and repeating shows u ∈ C∞(M).

Let us show that I(f) is open. Write ωu = ω + i∂∂̄u and compute the
differential of the map Cal:

∂

∂ε

∣∣∣∣
ε=0

log
(ω + i∂∂̄(u+ εv))n

ωnu
= n

i∂∂̄v ∧ ωn−1
u

ωnu
= −1

2
∆guv.

Since the Laplacian is an isomorphism between Ck+2,α and Ck,α, a version of
the inverse function theorem implies that Cal is an open maping and hence I(f)
is open.

2See, e.g., D. Gilbarg and N.S. Trudinger “Elliptic Partial Differential Equations of Second
Order”, Springer (1983, 2001).
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It remains to show that I(f) is closed, or, equivalently, that Cal is a proper
mapping. Let tn ∈ I(f) and tn → t ∈ [0, 1] and let un be the correspond-
ing unique smooth solutions of Cal(u) = tnf . If α > β, then the inclusion
C2,α(M) ↪→ C2,β(M) is compact (i.e. the image of a bounded set is relatively
compact) - this is similar to usual Arzelà-Ascoli theorem. Thus as soon as we
have a uniform estimate of the C2,α-norm of the un for some α, then (un) has
a convergent subsequence in C2,β(M), β < α, and hence t ∈ I(f).

Therefore one needs a priori C2,α-estimates on solutions. About this part,
which is of course the key to the proof, I shall say only a few words. C0-estimates
are very hard, and due to Yau. C2-estimates are obtained by differentiating
Cal(u) = f twice as above, and getting an estimate on ∆gu. C3-estimates
are then obtained by the following trick, which is due to Calabi. Consider the
positive function:

S =
∑

gαλu gµβu gγν
(
∂αβγu

)(
∂λµνu

)
.

The Laplace equation for S, together with C2-estimates on u, gives an estimate
on S. Since the C2-estimates are estimates on gu, i.e. on the coefficients on S,
this yields C3-estimates on u.

Remark 5.2.7. It is now known that this last trick is actually a property of equa-
tions of Monge-Ampère type: the C2,α-estimates follow from the C2-estimates
(see Gilbarg and Trudinger, op. cit., Theorem 17.14).

Further reading:

(i) For all the analytic details of the proof, see (apart from Yau’s original
paper) Chapter 5 of D. Joyce’s book “Compact manifolds with special
holonomy” (OUP 2000).

(ii) As we have seen, not every compact manifold manifold admits a Kähler
metric. On the other hand, as mentioned at the end of §4.2, every
compact complex manifold admits a Gauduchon metric, i.e. one where
∂∂̄ωn−1 = 0. Motivated by the Calabi-Yau theorem, Gauduchon asked in
1984 whether we can prescribe the Ricci curvature of a Gauduchon
metric. This has been proved in 2017 by G. Székelyhidi, V. Tosatti, and
B. Weinkove, “Gauduchon metrics with prescribed volume form”, Acta
Math., 219 (2017), 181–211. It is perhaps worth pointing out that, since
the global ∂∂̄-lemma does not need to hold on M , one seeks a metric with
the Ricci form in the same Bott-Chern cohomology class as 2πc1(M).

5.3 Aubin-Yau theorem

The Calabi-Yau theorem implies, in particular, that on any compact Kähler
manifold M with c1(M) = 0 there exists a Ricci-flat Kähler metric. This solves
the problem of existence of Kähler-Einstein metrics with zero Einstein constant,
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but what about nonzero Einstein constant, i.e. Kähler metrics which satisfy
ρ = λω, λ 6= 0? Clearly we require c1(M) > 0 or c1(M) < 0 (as defined in
Remark 4.3.10). The Calabi-Yau theorem gives only a weaker conclusion:

Corollary 5.3.1. If M is a compact complex manifold with c1(M) > 0 (resp.
c1(M) < 0), then M admits a Kähler metric with positive (resp. negative) Ricci
curvature.

Remark 5.3.2. Observe that if c1(M) > 0 or c1(M) < 0, then M admits a
Kähler metric.

The case of c1(M) < 0 has been completely answered by Aubin and Yau
(independently):

Theorem 5.3.3 (Aubin-Yau). Let M be a compact complex manifold with neg-
ative first Chern class. Then M has a unique (up to rescaling) Kähler-Einstein
metric (with negative Einstein constant).

Example 5.3.4. Let M ⊂ CPn be the smooth zero set of a homogeneous poly-
nomial of degree d. The same computation as for the K3-surface (Ex. 3.4.10)
shows that

c1(M) = (n+ 1− d) c1(CPn)|M .

Therefore, provided d > n+ 1, such an M carries a Kähler-Einstein metric with
λ < 0.

Sketch of a proof. Choose λ < 0. Since c1(M) < 0, there exists a positive real
(1, 1)-form ω such that λω ∈ 2πc1(M). In particular g(X,Y ) = ω(X, JY ) is
a Kähler metric. We seek a Kähler-Einstein metric g′ with Kähler form ω′,
Ricci-form ρ′ and Einstein constant λ, i.e. ρ′ = λω′. Since ρ′ ∈ 2πc1(M),
λω′ ∈ 2πc1(M) and so, once again, [ω] = [ω′] means that

ω′ − ω = i∂∂̄u ⇐⇒ ρ′ − ρ = −i∂∂̄ Cal(u).

Since [ρ] = [λω], there exists a smooth function f , unique up to an additive
constant, such that ρ− λω = i∂∂̄f , and this can be rewritten as

ρ′ − ρ = λω′ − λω − i∂∂̄f = λi∂∂̄u− i∂∂̄f.

Therefore −i∂∂̄ Cal(u) = −i∂∂̄(f − λu). Thus we need to show this time that
there exists a unique solution to the equation Cal(u) = −λu + f for a given
f , where u ∈ K and λ < 0. This is a different Monge-Ampère equation. The
positivity of ω+ i∂∂̄u follows as before, as do the uniqueness and the regularity.
For the existence on uses again the continuity method, i.e. one considers the set

I(f) = {t ∈ [0, 1] ; ∃u : Cal(u) = −λu+ tf}.

Again 0 ∈ I(f) (u = 0 is a solution). I(f) is open, since the linearisation of the
equation is

−1

2
∆guv + λv = 0
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and the Laplacian does not have negative eigenvalues:

0 >

∫
M

2λv2ωnu =

∫
M

〈∆v, v〉ωnu =

∫
M

〈d∗dv, v〉ωnu =

∫
M

〈dv, dv〉ωnu ≥ 0,

which is a contradiction. Therefore the linearised map is again an isomorphism
and the inverse function theorem implies that Cal(u) + λu is an open mapping.

For the remainder (i.e. the closedness of I(f)) one needs estimates similar to
those in the Calabi-Yau theorem. This time, however, they are easier to obtain
(and the Aubin-Yau theorem was proved before Theorem 5.2.1). In particular,
a C0-estimate is very easy: we have a solution of

log
(
ω + i∂∂̄u

)n − logωn = −λu+ f,

which means that at a maximum (resp. minimum) of u we have −λu + f ≤ 0

(resp. −λu+ f ≥ 0). Therefore, at any m ∈M , |u(m)| ≤ |λ|−1
supM |f |.

Remark 5.3.5 (Extremal metrics). Kähler-Einstein metrics can exist only if
c1(M) is positive, negative, or zero, and then only in this cohomology class.
But suppose we choose an arbitrary cohomology class Ω ∈ H2

dR(M). What
would be the “best” Kähler metric in this class (i.e. with [ω] = Ω)?

One option is to look for metrics with constant scalar curvature3 S. More
generally, one looks for critical points of the functional (also called Calabi func-
tional)

Ω 3 ω 7−→
∫
M

S(ω)2ωn. (5.3.1)

Such a metric is called extremal. One can show that a Kähler metric is extremal
if and only if the (1, 0)-part of the (Riemannian) gradient of the scalar curvature
is a holomorphic vector field. This means that on a compact complex manifold,
which does not have global holomorphic vector fields (i.e. H0(M,T 1,0M) = 0),
any extremal metric has constant scalar curvature. In general, there do exist
extremal metrics with non-constant scalar curvature. There also exist projective
manifolds without any extremal metrics.

Further reading: For more on extremal metrics, see §11.E in Besse’s
“Einstein manifolds”, or “An Introduction to Extremal Kähler Metrics” by G.
Székelyhidi (AMS, 2014).

3Scalar curvature is the trace of the Ricci curvature.
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5.4 Obstructions in the case c1(M) > 0

In the remaining case, c1(M) > 0, any attempt to prove Theorem 5.3.3 encoun-
ters problem after problem. Certainly the uniqueness statement fails: consider
the Fubini-Study metric g on CPn which is Kähler-Einstein. Let φ be a notrivial
biholomorphism of CPn which is not an isometry, i.e. φ ∈ PGL(n+1,C)\PU(n+
1). Then φ∗g is a Kähler-Einstein metric different from g.

The openness of I(f) cannot be proved in the same way as for c1 ≤ 0.
This is not critical; Aubin has shown how to overcome this. Instead of solving
Cal(u) = −λu + tf , we consider the equation Cal(u) = −tλu + f . Calabi-Yau
theorem implies that this has a solution for t = 0. If u is a solution for some
t ≥ 0, and we set ωt = ω + i∂∂̄u, then the Ricci form of ωt is

ρt = λtωt + λ(1− t)ω0.

Therefore the Ricci curvature is greater than λt if t < 1. The linearised operator
is − 1

2∆gt+tλ. We can now appeal to a result of Lichnerowicz (proved in the next
subsection), who showed that the first nonzero eigenvalue λ1 of the Laplacian on
a compact Kähler manifold with Ricci > µ > 0 satisfies λ1 ≥ 2µ. Hence, in our
case, the linearised operator is invertible for any t ∈ [0, 1) for which a solution
exists. This is enough for the continuity method to work, provided we can show
that I(f) is closed. This, as explained above, requires apriori estimates. The
C2- and C3-estimates do not depend on the sign of λ and continue to hold.
However, the C0-estimate might fail! For a good reason, too: there are compact
Kähler manifolds with c1 > 0, which do not admit Kähler-Einstein metrics.

The obstructions, as we shall now see, have to do with automorphic (i.e.
real-holomorphic) transformations of Kähler manifolds.

Killing vector fields on compact Kähler-Einstein manifolds

Recall that a Killing vector field X on a Riemannian manifold (M, g) is the
same as an infinitesimal isometry, i.e. LXg = 0. On the other hand, a real-
holomorphic vector field (Definition 1.5.11) is an infinitesimal automorphism of
the complex structure, i.e. LXJ = 0. In other words X is the real part of a
global holomorphic vector field.

As we shall now see, on compact Kähler-Einstein manifolds real holomorphic
and Killing vector fields are closely related. First of all, we have the following
application of the Hodge-de Rham theorem:

Theorem 5.4.1. An infinitesimal isometry on a compact Kähler manifold is
also an infinitesimal automorphism of the complex structure. In other words, a
continuous group of isometries preserves the complex structure as well.

Proof. Let φt : M →M be a continuous 1-parameter group of isometries, t ∈ I,
φ0 = Id, i.e. φt is obtained by integrating tX, where X is a Killing vector field.
Let ω be the fundamental form of the Kähler metric, i.e. ω(v, w) = g(Jv,w). We
need to show that φ∗tω = ω. On a Kähler manifold, ω is parallel, hence closed
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and co-closed, hence harmonic. Since each φt is an isometry, it commutes with
the Hodge star, so it takes harmonic forms to harmonic forms. The Hodge-de
Rham theorem implies that we have the commutative diagram

Hk(M)
[φt]−−−−→ Hk(M)

'
y '

y
Hk∆(M)

φ∗t−−−−→ Hk∆(M).

The upper horizontal map is the identity since each φt is homotopic to identity.
Therefore the lower horizontal map is also the identity.

Remark 5.4.2. Observe the difference with the non-compact case: the Euclidean
metric on Cn is preserved by all A ∈ SO(2n,R), but the complex structure only
by A ∈ U(n) ⊂ SO(2n,R). Observe also that the above is statement false for
discrete groups of isometries, e.g. antipodal map on S2 ' CP 1.

We are now going to prove (∆ denotes the Riemannian Laplacian):

Theorem 5.4.3 (Matsushima). Let M be a compact Kähler-Einstein manifold
with nonzero Einstein constant λ. Then the Killing vector fields are in 1 − 1
correspondence with functions u such that ∆u = 2λu. In particular, if λ < 0,
then there are no Killing vector fields on M , i.e. the isometry group of M is
discrete.

Proof. First of all, the second statement follows from the first by integration:

2λ

∫
M

u2 =

∫
M

u∆u =

∫
M

〈du, du〉.

For the first part, we need:

Lemma 5.4.4. Let X be a real-holomorphic vector field on a Kähler manifold.
For any smooth function f we have:

2i(X)
(√
−1∂∂̄f

)
= Jd(X(f)) + d((JX)(f)).

Proof. First of all 2
√
−1∂∂̄ = dJd. Using Cartan’s magic formula LX = di(X)+

i(X)d for differential forms, we obtain:

i(X)dJdf = LX(Jdf)−di(X)Jdf = JLX(df)+di(JX)df = Jd(X(f))+dLJXf.

Proof of the theorem: Suppose that X is a Killing vector field (hence auto-
morphic, due to Theorem 5.4.1) and apply this lemma to the local function
f = ln det[gij ]. We obtain

−2i(X)ρ = dLJX ln det[gij ]
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since X is Killing. Now LJXω
n = hωn for some h ∈ C∞(M), which means that

LJX ln det[gij ] = h. Hence i(X)ρ is exact, and since i(X)ρ = λi(X)ω and λ 6= 0,
i(X)ω is exact. We can therefore write i(X)ω = du for some u ∈ C∞(M), which
means that gradu = JX (du(Y ) = ω(X,Y ) = g(JX, Y )). On the other hand,
for any f ∈ C∞(M), Lgrad fω

n = −(∆f)ωn. Therefore

hωn = LJXω
n = Lgraduω

n = −(∆u)ωn,

which means that h = −∆u. Consequently:

d∆u = −dh = 2i(X)ρ = 2λi(X)ω = 2λdu,

i.e. d(∆u− 2λu) = 0 and ∆u− 2λu is constant on each connected component.
Since u is defined only up to an additive constant and λ 6= 0, we have exactly
one u such that ∆u = 2λu.

For the other direction we need the aforementioned result of Lichnerowicz:

Theorem 5.4.5 (Lichnerowicz). Let M be a compact Kähler manifold with
Ricci curvature ≥ λ > 0. Then the first nonzero eigenvalue λ1 of ∆ satisfies
λ1 ≥ 2λ. Equality implies that the gradient vector field X = gradϕ of any
eigenfunction ϕ for λ is automorphic and satisfies Ric(X) = λX.

Before proving this, let us see how Theorem 5.4.3 follows. Let u ∈ C∞(M)
satisfy ∆u = 2λu. Theorem 5.4.5 implies that X = gradu is automorphic and
Ric(X) = λX. Hence, for any vector field Y ,

ρ(JX, Y ) = −ρ(X, JY ) = −Ric(X,Y ) = −g(Ricci(X), Y ) = −λg(X,Y ) = −λdu(Y ),

and so i(JX)ρ = −λdu, i.e. i(JX)ω = −du, i.e. LJXω = 0. But we also have
LJXJ = JLXJ = 0, and hence JX is an infinitesimal isometry.

It remains to prove the Lichnerowicz theorem. Let X be a vector field on a
Kähler manifold and consider ∇X as an endomorphism of the tangent bundle
z 7→ ∇zX. We can decompose:

∇X = ∇1,0X +∇0,1X =
1

2
(∇X − J ◦ ∇X ◦ J) +

1

2
(∇X + J ◦ ∇X ◦ J) .

X is automorphic if and only if ∇X ◦ J = J ◦ ∇X, i.e. ∇0,1X = 0. We now
compute

∇∗(J ◦ ∇X ◦ J) = J ◦ ∇∗(∇X ◦ J) = −Ric(X),

since Ric(X) =
∑
R(Ei, JEi)JX for a local frame {E1, JE1, . . . , En, JEn}.

Therefore

∇∗∇X =
1

2
(∇∗∇X + Ric(X)) +∇∗∇0,1X,

which is equivalent to

2∇∗∇0,1X = ∇∗∇X − Ric(X). (5.4.1)
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We need one more ingredient from Riemannian geometry: the Bochner identity4

says that on a Riemannian manifold(
∆X[

)]
= ∇∗∇X + Ric(X).

If ϕ is an eigenfunction of the Laplacian, i.e. ∆ϕ = µϕ, then X = gradϕ satisfies(
∆X[

)]
= (∆dϕ)] = (d∆ϕ)] = µ(dϕ)] = µX.

The Bochner formula yields µX = ∇∗∇X + Ric(X), which we can rewrite as

∇∗∇X = (µ− 2λ)X + (2λX − Ric(X)).

Formula 5.4.1 gives now:

∇∗∇0,1X =
1

2
(µ− 2λ)X + (λX − Ric(X)).

Therefore Ric(X) ≥ λ implies

0 ≤
∥∥∇0,1X

∥∥2

2︸ ︷︷ ︸
L2−norm

= 〈∇0,1X,∇0,1X〉L2 = 〈∇0,1X,∇X〉 = 〈∇∗∇0,1X,X〉

=
1

2
(µ− 2λ)‖X‖22 + 〈λX − Ric(X), X〉 ≤ 1

2
(µ− 2λ)‖X‖22,

and hence X = gradϕ is nonzero only if µ ≥ 2λ. Moreover the equality is
equivalent to ∇0,1(X) = 0 and λX = Ric(X).

This finishes the proof of the Lichnerowicz theorem, and hence also the proof
of Theorem 5.4.3. We have the following important application:

Theorem 5.4.6 (Matsushima). Let M be a compact Kähler-Einstein manifold
with positive Einstein constant. Then any infinitesimal automorphism X of the
complex structure is of the form X = X1 + JX2, where X1 and X2 are Killing
vector fields.

Proof. Recall the formula from Lemma 5.4.4:

2i(X)
√
−1∂∂̄f = Jd(X(f)) + d((JX)(f)), ∀f ∈ C∞(M).

In particular, applying this to f = − ln det[gij ] yields

2i(X)ρ = Jdh1 + dh2,

where

h1 = X(− ln det[gij ]) = −X(det[gij ])

det[gij ]
, h2 = JX(− ln det[gij ]).

4See, e.g., P. Petersen “Riemannian Geometry” (Springer, 2006), Corollary 7.21 (p. 216).
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Therefore h1ω
n = −LXωn and h2ω

n = −LJXωn. Since ρ = λω, we get
2i(X)ω = Jd

(
h1

λ

)
+ d

(
h2

λ

)
. Since ω is nondegenerate, there exist vector fields

Y1 and Y2 such that

i(Y1)ω = Jd

(
h1

2λ

)
, i(Y2)ω = d

(
h2

2λ

)
,

so that X = Y1 + Y2. It follows that LY2
ω = 0 and LJY1

ω = 0. Now

i(JY2)g = i(Y2)ω = d

(
h2

λ

)
⇐⇒ grad

(
h2

2λ

)
= JY2.

On the other hand

h2ω
n = −LJXωn =

LJY1
ωn=0

−LJY2
ωn = ∆

(
h2

2λ

)
ωn.

Therefore ∆h2 = 2λh2 and Theorem 5.4.3 implies that Y2 is a Killing vector
field. The same argument shows that JY1 is Killing.

This gives the following restriction on the group of biholomorphisms of com-
pact Kähler-Einstein manifolds:

Corollary 5.4.7. Let M be a compact complex manifold. If M admits a Kähler-
Einstein metric with λ > 0, then the Lie algebra of the group of biholomorphisms
of M is reductive, i.e. the complexification of the Lie algebra of a compact Lie
group.

Proof. Follows immediately from the fact that the isometry group of a compact
Riemannian manifold is compact.

Remark 5.4.8. The conclusion of this corollary holds already for compact Kähler
manifolds with constant scalar curvature. This is due to Lichnerowicz; see
Besse’s “Einstein manifolds”, Proposition 2.151.

.

The Futaki invariant

Another obtstruction to existence of Kähler-Einstein metrics with λ > 0 is given
by the so-called Futaki invariant, which is a linear functional on the space a(M)
of real-holomorphic vector fields (recall that a(M) ' H0(M,T 1,0M)). First of
all define, on any compact Kähler manifold, a Ricci potential to be a function F
such that ρ− i∂∂̄F is harmonic. Such an F exists: let ν be the unique harmonic
form in [ρ] = c1(L); then ρ − ν is an exact real (1, 1)-form, and hence of the
form i∂∂̄F (due to the global ∂∂̄-lemma). We can make F unique by requiring
that its integral over M vanishes. The Futaki invariant is defined as

F(X) =

∫
M

X(F )ωn, X ∈ a(M).
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Proposition 5.4.9. Let (M, g) be a compact Kähler manifold. If the scalar
curvature of g is constant, then the Ricci potential F is identically zero. Con-
sequently, the Futaki invariant vanishes as well.

Proof. From the definition of F , ρ = φ+ i∂∂̄F , where φ is harmonic. Therefore
the scalar curvature S satisfies 1

2S = tr ρ = trφ + 1
2∆F . Since φ is harmonic,

its trace is constant, so S = const implies that ∆F is constant, hence equal to
zero, and so F must be zero.

Remark 5.4.10. The definition of the Futaki invariant may seem strange at first
sight. One reason for interest is that F actually depends only on the cohomology
class of ω and not on the metric itself (see Corollary 2.160 in Besse’s “Einstein
manifolds”). Even more importantly, it turned out that a generalisation of the
Futaki invariant, due to Donaldson, is precisely what one needs in order to
characterise compact complex manifolds with c1 > 0 which admit a Kähler-
Einstein metric.

5.5 Blowing-up and examples with no Kähler-
Einstein metric

We are going to give an example of a compact Kähler manifold with c1 > 0
which does not satisfy the conclusion of Corollary 5.4.7 and therefore has no
Kähler-Einstein metric. In order to do this, we need one of the most important
constructions in complex geometry5 - blowing up a point or, more generally, a
subvariety.

We begin with the local construction. Let ∆ be a disk in Cn, centred at the
origin and define

∆̃ =
{

(z, l) ∈ ∆× CPn−1; z ∈ l
}

=
{(

(z1, . . . , zn), [l1, . . . , ln]
)
; zilj = zj li

}
.

We have the projection

π : ∆̃→ ∆, π(z, l) = z.

If z 6= 0, then there is a unique line through 0 containing z, so that π is an
isomorphism away from 0 ∈ ∆. On the other hand π−1(0) = CPn−1. The

manifold ∆̃ with the projection onto ∆ is called the blow-up of ∆ at 0. Observe
that it effectively separates all lines passing through 0; one should think of it as
parametrising points of ∆ and tangent directions at 0.

Observe also that for ∆ = Cn the projection onto the other factor, C̃n →
CPn−1, identifies C̃n with the tautological line bundle J on CPn−1.

5Blowing-up is becoming increasingly important in real differential geometry. For example,
it is used to describe the asymptotic behaviour of large classes of complete Riemannian metrics.
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Let now M be a complex manifold of dimension n and U a neighbourhood
of x ∈ M biholomorphic to ∆. We define the blow-up M̃x of M at x to be the
complex manifold obtained by replacing U with its blow-up Ũ ' ∆̃, i.e.:

M̃x = (M\U) t Ũ .

Again there is a projection π : M̃x → M which is an isomorphism away from
x. The inverse image Ex = π−1(x) ' CPn−1 is called the exceptional divisor of
the blow-up.

Remark 5.5.1. More generally, we can blow up a complex submanifold Y of M
by replacing Y with the projectivisation of its normal bundle NY = TM |Y /TY .
Intuitively, we separate all normal directions at every point of Y .

We are going to compute the first Chern class of a blow-up at a point. We
compute in the second cohomology group. We can decompose M̃ = M̃x as
the union of M̃\E ' π−1(M\{x}) and a tubular neighbourhood W of E in

M̃ . W is isomorphic to a neighbourhood of the zero section in the normal
bundle of E. We may assume that n = dimCM ≥ 2, since blowing up is a
trivial operation in dimension 1. The Mayer-Vietoris sequence implies then
that c1(M) = c1(M\{x}). On the other hand c1(M̃\E) ' π∗c1(M\{x}) (since

π is an isomorphism outside x), and hence c1(M̃\E) = π∗c1(M). Since W\E is
isomorphic to punctured disk and n ≥ 2, W\E has no cohomology in dimension

1 or 2. Therefore the Mayer-Vietoris sequence implies that c1(M̃) = π∗c1(M)+
c1(W ). We need to compute c1(W ) = c1(TW ). Since W can be deformed to E,
we only need to compute c1(TW

∣∣
E

). Since the normal bundle of E is isomorphic

to the tautological bundle J on CPn−1, the projection W → E induces an exact
sequence

0→ J → TW
∣∣
E
→ TE → 0,

where J is the tautological bundle on E ' CPn−1. Therefore

Λn
(
TW

∣∣
E

)
' J ⊗ Λn−1TE = J ⊗K∗CPn−1 ' J ⊗Hn ' Hn−1.

Thus, finally:
c1(M̃) = π∗c1(M) + (n− 1)c1(H).

We can identify the class c1(H) as follows:

Lemma 5.5.2. The line bundle J on E is isomorphic to [E]|E.6 Consequently,
c1(H) = −ηE, where ηE is the Poincaré dual of E, and

c1(M̃) = π∗c1(M)− (n− 1)ηE . (5.5.1)

Proof. The first statement is local, so we can assume that M = ∆. Consider the
pullback of J = O(−1) from CPn−1 under the second projection ∆̃ → CPn−1.
This bundle has a section s : (z, l) 7→

(
(z, l), z

)
, which vanishes along E. This

proves the first statement, and the second one follows from Theorem 3.5.7.
6Recall the definition of a line bundle corresponding to a divisor from §3.5.
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Del Pezzo surfaces

We shall now investigate the positivity of the first Chern class of the blow-up
of CP2 at several points. First of all, we have:

Proposition 5.5.3. Let S be the blow-up of CP2 at one or two points. Then
c1(S) > 0.

Proof. Consider first the blow-up at one point, say p = [1, 0, 0]. In terms of
local coordinates [z0, z1, z2] the local coordinates near p are z1/z0, z2/z0 and the
definition of the blow-up given above means that we can describe the blow-up

S = C̃P2
p as a hypersurface in CP2 × CP1:{

([z], [w]) ∈ CP2 × CP1; z1w1 − z2w0 = 0
}
.

We have shown in (3.4.2) that K∗S ' K∗M
∣∣
M
⊗ N∗S , where M = CP2 × CP1

and NS is the normal bundle of S in M . Let π1, π2 be the projections from
CP2 × CP1 onto the two factors. Then TM ' π∗1TCP

2 ⊕ π∗2TCP
1 and taking

the exterior powers show that K∗M ' π∗1OCP2(3) ⊗ π∗2OCP1(2). On the other
hand, since S is defined by an equation of degree 1 in z and of degree 1 in w,
NS '

(
π∗1OCP2(1)⊗ π∗2OCP1(1)

)∣∣
S

. Combining these formulae yields:

K∗S '
(
π∗1OCP2(2)⊗ π∗2OCP1(1)

)∣∣
S
.

Both OCP2(2) and OCP1(1) have hermitian metrics with positive Ricci form. The
Ricci form of the tensor metric on

(
π∗1OCP2(2)⊗ π∗2OCP1(1)

)
is just the sum of

the two Ricci forms, so it is positive, and of course it remains positive when
restricted to S. Thus c1(S) > 0.

For two points, we can similarly describe the blow-up S as submanifold of
CP2 × CP1 × CP1 cut out by two equations of degrees (1, 1, 0) and (1, 0, 1). A
similar computation gives now

K∗S '
(
π∗1OCP2(1)⊗ π∗2OCP1(1)⊗ π∗3OCP1(1)

)∣∣
S
,

and again we can conclude that c1(S) > 0.

The argument in the proof clearly breaks down for a blow-up at 3 points.
Nevertheless one can show (although we shall not do this) that the blow-up of
CP2 at three points still satisfies c1 > 0, provided these three points do not lie
on a line (i.e. CP1) in CP2. So can we get 2-dimensional projective manifolds
with c1 > 0 by blowing up CP2 at an arbitrary number of points? The answer
is no, as we shall now see.

Clearly if a cohomology class α ∈ H1,1(M) is positive then
∫
Y
αm > 0 for any

m-dimensional submanifold (or subvariety) Y of M .7 We are going to compute∫
S
c1(S)2 for blow-ups of CP2.
We need a preparatory result:

7Remarkably, if α = c1(L), then the converse is also true. This is known as the Nakai-
Moishezon criterion.
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Lemma 5.5.4. Let E be the exceptional divisor of the blow-up of CP2 at a
point. Then the self-intersection number of E is −1, i.e. ηE ∩ ηE = −1.

Proof. Without loss of generality we may assume that we blow up x = [1, 0, 0].
Consider the meromorphic function f = z1/z0 on CP2 and its composition

f̃ = f ◦ π with π : C̃P2 → CP2. The divisor of f̃ is E +H1 −H0, where H0, H1

are the pullbacks of hyperplanes {z0 = 0}, {z1 = 0}. This means that the
line bundles [E] and [H0 − H1] are isomorphic, and hence, owing to Theorem
3.5.7, ηE = ηH0 − ηH1 . Now observe, directly from the definition of the blow-
up, that E does not intersect H0 and it intersects H1 in one point. Hence
E.E = E.(H0 −H1) = −1.

Remark 5.5.5. Since blow-up is a local construction, this lemma is valid for any
complex surface S. The fact that E.E = −1 means that we cannot move E
inside S̃p. Indeed, if we could, then E and its deformation E′ would intersect in
one point, but with opposite orientations. This means that E′ is not a complex
submanifold of S̃p.

Let us now blow up CP2 at k distinct points x1, . . . , xk. We know from
(5.5.1) that

c1(C̃P2
x1,...,xk) = c1(CP2)− ηE1

− · · · − ηEk = 3c1(H)− ηE1
− · · · − ηEk .

Therefore (where we identify highest cohomology with C via integration)

c1(C̃P2
x1,...,xk)2 = (3 c1(H)︸ ︷︷ ︸

=ηCP1

−
∑
i

ηEi)
2 = 9 η2

CP1︸︷︷︸
=1

−6
∑
i

ηCP1 · ηEi︸ ︷︷ ︸
=0

+
∑
i

η2
Ei︸︷︷︸

=−1

= 9−k.

Thus c1

(
C̃P2

x1,...,xk

)
can be positive only if k ≤ 8. It turns out that for a

generic choice of up 8 points, the first Chern class of this surface is indeed
positive. These manifolds are known as del Pezzo surfaces8.

We shall now relate the group of automorphisms (i.e. biholomorphisms) of
a surface to that of its blow-up.

Proposition 5.5.6. Let S be a complex surface and S̃p the blow-up of S at

p ∈ S. Then the connected component of identity Aut0(S̃p) of the group of

automorphisms of S̃p is isomorphic to the stabiliser of p in Aut0(S):

Aut0(S̃p) ' Aut0(S, p) =
{

Φ ∈ Aut0(S) ; Φ(p) = p
}
.

Proof. If Ψ ∈ Aut(S̃p), then Ψ∗ηE ·Ψ∗ηE = −1. Therefore Ψ maps E to another
curve with self-intersection −1. If Ψ is close to identity then, as explained in
Remark 5.5.5, this curve must be E, so that Aut0(S̃p) preserves E, and hence

preserves S̃p\E. The restriction of Ψ to S̃p\E defines an element of Aut0(S, p).

Conversely, an automorphism Φ ∈ Aut0(M,p) defines an automorphism Φ̃ of

S̃p by setting Φ̃|S̃p\E = ΦS\{p} and Φ̃|E = dΦp (recall that E ' P(TpS)).

8A del Pezzo surface is, by definition, a 2-dimensional projective manifold with c1 > 0.
The only one which is not a blow-up of CP2 is CP1 × CP1.
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We can finally give examples of compact complex manifolds with c1(M) > 0
and no Kähler-Einstein metric.

Example 5.5.7. Consider the blow-up of CP2 in one or two points, say p1 =
[1, 0, 0] in the first case, and p1 = [1, 0, 0], p2 = [0, 1, 0] in the second case. We
know from Proposition 5.5.3 that these surfaces have positive first Chern class.
Proposition 5.5.6 implies that

Aut0

(
C̃P2

p1

)
=


∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 ∈ PGL(3,C)

 ,

Aut0

(
C̃P2

p1,p2

)
=


∗ 0 ∗

0 ∗ ∗
0 0 ∗

 ∈ PGL(3,C)

 .

These groups are nonreductive, and therefore Corollary 5.4.7 implies that C̃P2
p1 ,

C̃P2
p1,p2

do not admit Kähler-Einstein metrics.

Remark 5.5.8. For 3 points, the corresponding group will be nonreductive only if
the 3 points are collinear. But then, as remarked after Proposition 5.5.3, the first
Chern class of the blow-up is not positive. In fact, all other del Pezzo surfaces
(i.e. apart from blow-ups of CP2 at one or two points) do carry a Kähler-Einstein
metric. This has been shown by G. Tian, “On Calabi’s conjecture for complex
surfaces with positive first Chern class”, Invent. Math. 101 (1990), 101–172.
For a readable exposition of the proof, see V. Tosatti, “Kähler-Einstein metrics
on Fano surfaces”, Expo. Math. (30) (2012), 11–31.

Remark 5.5.9. It is now known which projective manifolds with c1 > 0 admit
a Kähler-Einstein metric. For this, one needs to consider the Futaki invariant
not just of a given manifold M , but of its possible degenerations, i.e. complex
spaces M with a morphism M → C such the fibres Mz over z 6= 0 are all
isomorphic to M (but at z = 0 nasty things can happen to M). The space M
has to satisfy certain conditions; in particular, there is also a line bundle L over
M, which restricted to fibres over z 6= 0 is isomorphic to K∗M , and the pair
(M,L) is equipped with an action of C∗ covering the standard action of C∗ on
C.9 One can then define the Futaki invariant F0 of the central fibreM0, and M
is said to be K-polystable if F0 ≥ 0 for all such deformationsM with equality if
and only if M' M × C. In 2012 X.X. Chen, S. Donaldson and S. Sun proved
that a projective manifold M with c1(M) > 0 admits a Kähler-Einstein metric
if and only if M is K-polystable. This result is the culmination of almost 60
years of efforts by many famous mathematicians.

An analogous characterisation of manifolds admitting a constant scalar cur-
vature Kähler metric, or, more generally, an extremal metric, is still unknown.
It should also be related to K-stability, but a precise formulation, not to mention
a proof, is still unclear.

9The remaining condition is that the projection M → C is flat. I shall not attempt to
explain what this means, since “for every geometric description of flatness there is a coun-
terexample”. It does guarantee, however, that the degenerations are reasonably well-behaved.



Chapter 6

Kodaira embedding
theorem

Every projective manifold is Kähler, but not conversely. This chapter is con-
cerned first of all with characterising compact Kähler manifolds which can be
embedded into a projective space, and, later, with properties of projective man-
ifolds.

6.1 Line bundles and maps into projective spaces

Let M be a compact complex manifold and L a line bundle on M , such that
dimH0(M,L) ≥ 2, i.e. L has at least two linearly independent global sections.
To every point p ∈ M we associate the subspace Hp of global sections which
vanish at p. We have two possibilities: either Hp = H0(M,L) or Hp has
codimension one. We want to exclude the first possibility: a line bundle is called
base-point free1 if for every p ∈ M there exists a global section s ∈ H0(M,L)
such that s(p) 6= 0.

If a line bundle is base-point free then to every point p ∈M we can associate
a hyperplane Hp = {s ∈ H0(M,L); s(p) = 0}. A hyperplane in a vector space V
is the same as a line in the dual space V ∗, and therefore we obtain a holomorphic
map

ΦL : M → P
(
H0(M,L)∗

)
, p 7→ Hp,

to a projective space of dimension dimH0(M,L) − 1. Equivalently (but less
canonically) we can choose a basis s0, . . . , sN of H0(M,L), and on any open
subset U ⊂M where L is trivial with a local frame e and si(x) = fi(x)e, set

ΦL(x) = [f0(x), . . . , fN (x)] ∈ CPN .
1The base locus of a line bundle, or, more generally, of a linear subspace V ⊂ H0(M,L),

is the set {p ∈M ; s(p) = 0 ∀s ∈ V }.

116
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Remark 6.1.1. Observe that the bundle L is the pullback of the hyperplane
bundle O(1) on P

(
H0(M,L)∗

)
: L ' Φ∗LO(1).

Example 6.1.2 (Veronese embedding). We consider M = CPn and L = O(d) =
Hd. Global sections of O(d) are homogeneous polynomials of degree d in n+ 1
variables z0, . . . , zn. It is clear that the base locus is empty. The map ΦO(d) :

CPn → CPN , where N = dimH0(CPn,O(d)) − 1 =
(
n+d
n

)
− 1, is called the

Veronese embedding.
We can describe it more explicitly by choosing a basis of H0(CPn,O(d))

consisting of all monomials zα = zα0
0 . . . zαnn with α1, . . . , αn ≥ 0 and

∑
αj = d.

Let α0, . . . , αN be some ordering of these monomials. Then

ΦO(d)

(
[z0, . . . , zn]

)
=
[
zα0 , . . . , zαN

]
.

The image Vn,d of the Veronese embedding, a Veronese variety, is the zero locus
of the obvious quadratic equations in CPN : if αi, αj , αk, αl is a quadruple of
multi-indices such that zαizαj = zαkzαl , then Vn,d lies on the quadric wαiwαj =

wαkwαl in CPN . For example, V1,d (which is called a rational normal curve) is

a submanifold of CPd described by vanishing of all 2× 2 minors of[
w0 w1 . . . wd−1

w1 w2 . . . wd

]
,

where w0, . . . , wd are homogeneous coordinates on CPd. For d = 2 we get a
single equation w0w2 = w2

1.

In the above example, we have not actually proved that the Veronese embed-
ding is an embedding (although this particular case is easy to prove directly),
so let us address this question for a general basepoint-free line bundle L and the
map ΦL. A holomorphic (or smooth) map is an embedding if it is: (i) injective,
and (ii) an immersion. For the map ΦL injectivity means that for every pair x, y
of distinct points in M we can find a section s ∈ H0(M,L) such that s(x) = 0
and s(y) 6= 0. One says then that the line bundle L separates points. We can
also express this property by saying that the natural map

H0(M,L) −→ Lx ⊕ Ly,

given by evaluating sections at x and y, is surjective for every x 6= y. Inciden-
tally, the basepoint-free property can be expressed similarly: the natural map
H0(M,L) −→ Lx is surjective for every x ∈M (one says that L is generated by
sections). These evaluations maps can be also viewed as arising from long exact
cohomology sequences associated to exact sequence of sheaves:

0 −→ L⊗ Ix −→ L −→ Lx −→ 0, (6.1.1)

0 −→ L⊗ Ix,y −→ L −→ Lx ⊕ Ly −→ 0, (6.1.2)

where Ix (resp. Ix,y) is the (ideal) sheaf of holomorphic functions vanishing at
x (resp. vanishing at x and y). The map ΦL associates H0(M,L⊗ Ix) to x.
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The second condition, that of immersion, means that the differential of ΦL is
injective at every x ∈M . In other words, for every v ∈ TxM , there is a section
s of L vanishing at x, but such that “ds(v)” 6= 0. I claim that ds is well defined
as an element of (T ∗M ⊗L)x. Indeed, choose any local trivialisation near x, so
that the section s is represented by a smooth map s0 : U × C and define ds in
the usual way (as the differential of a smooth map). In any other trivialisation,
s is represented by s1 = gs0, where g is the change of trivialisations. Then
ds1|x = (s0dg)|x + (gds0)|x = g(x)ds0|x, since s0(x) = 0, and consequently
ds0|x represents an element of (T ∗M ⊗ L)x. Therefore, condition (ii) can be
rephrased as: the well defined sheaf map

dx : L⊗ Ix → T ∗xM ⊗ Lx

is surjective on global sections for every x ∈ M . One says that the line bundle
L separates tangent directions. The sheaf map dx also fits into a short exact
sequence:

0 −→ L⊗ I2
x −→ L⊗ Ix

dx−→ T ∗xM ⊗ Lx −→ 0. (6.1.3)

Remark 6.1.3. Observe that Ix/I2
x is canonically isomorphic to T ∗xM . Indeed,

T ∗xM can be viewed as H1,0(M)/H1,0(M) ⊗ Ix (quotient of the sheaf of holo-
morphic 1-forms by 1-forms vanishing at x), and the differential dx maps I2

x

(sheaf of holomorphic functions vanishing to order 2 at x) to H1,0(M)⊗Ix and
induces an isomorphism Ix/I2

x ' H1,0(M)/H1,0(M)⊗ Ix.

Definition 6.1.4. A holomorphic line bundle L on a compact complex manifold
M is called very ample, if the map ΦL is an embedding, i.e. L separates points
and tangent directions. L is called ample if some tensor power Lk = L⊗k, k ∈ N,
is very ample.

The following is the immediate consequence of the definition:

Proposition 6.1.5. Let M be a compact complex manifold and suppose that
there exists an ample line bundle on M . Then M is projective. 2

Example 6.1.6. Returning to the Veronese embedding, it is clear that homoge-
neous polynomials of degree d > 0 separate points and tangent directions, so
this really is an embedding.

Example 6.1.7 (Elliptic curves). Let C = C/Λ be an elliptic curve, where Λ =
{mω1+nω2;m,n ∈ Z}, ω1, ω2 ∈ C are linearly independent over R. We consider
line bundles O(kp) = [kp] corresponding to divisors of the form kp, where p is
a point on C and k ∈ N. We have exact sequences:

0 −→ O((k − 1)p) −→ O(kp) −→ O(kp)/O((k − 1)p) ' C −→ 0, (6.1.4)

where the first map multiplies a local section of O((k−1)p) on U by z−p if p ∈ U
and by 1 if p 6∈ U . Since KC is trivial (C is a torus), the Kodaira-Serre duality
tells us that H1(C,O(kp)) ' H0(C,O(−kp))∗ and hence dimH1(C,O(kp)) is
1 if k = 0 and 0 if k ≥ 1. The long exact cohomology sequence of (6.1.4) shows
now inductively that dimH0(C,O(kp)) = k.
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We consider the maps ΦL corresponding to L = O(kp), k ∈ N. Observe that
the ideal sheaves occuring in (6.1.1)-(6.1.3) are now line bundles: O(kp)⊗Ix '
O(kp − x), O(kp) ⊗ Ix,y ' O(kp − x − y), O(kp) ⊗ I2

x ' O(kp − 2x). The
long exact sequence of (6.1.4) with k = 1 shows that O(p) is not generated by
sections. O(2p) is generated by sections (H1(C,O(2p−x)) = 0 due to the Serre
duality), but it separates neither points nor tangent directions (non-separation
of points can be seen from topology: there is no smooth injective map from a
torus to P1 ' S2; for tangent directions set x = p in (6.1.3) - then L⊗ I2

x ' O
and the long exact sequence of (6.1.3) shows that dx is not surjective). For
k ≥ 3, however, O(kp) is very ample. Indeed, the Serre duality implies then
that H1(C,L⊗Ix,y) = 0 and H1(C,L⊗I2

x) = 0, so the corresponding maps on
global sections are surjective.

Thus, for L = O(3p), the map ΦL : C → CP2 is an embedding. In order to
identify it, we need to describe global sections of O(3p). Recall from §3.5 that
O(kp) has a tautological section s0 with zero of order k at p. If s is any other
global section of O(kp) then s/s0 is a meromorphic section of O(kp)⊗O(kp)∗ =
O(kp−kp) = O, i.e. a meromorphic function on C. Moreover the only singularity
of s/s0 is a pole of order at most k at p. Conversely, if f is a meromorphic
function on C with the only singularity a pole of order at most k at p (usual
notation is (f) ≥ −kp), then fs0 is a holomorphic section of O(kp). We have
thus an isomorphism of vector spaces:

H0(C,O(kp)) ' {f ∈ H0(C,M); (f) ≥ −kp}. (6.1.5)

The section s0 corresponds to the constant function f = 1. Taking k = 1 in the
above correspondence shows that there is no meromorphic function on C with
exactly one simple pole at p. Setting k = 2 shows that there is a unique (up
to rescaling) meromorphic function with pole of order 2 at p. This function,
known as the Weierstraß ℘-function, can be written explicitly. For z ∈ C\Λ set

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
.

This is a Λ-periodic meromorphic function on C (I shall leave the convergence
of the series as an exercise) with doubles poles at points of Λ, and hence it
descends to a meromorphic function on C with a double pole at the point p
corresponding to 0 ∈ C. The derivative of ℘

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3

has a pole of order 3 at p, and therefore corresponds to a section of O(3p). The
functions 1 and ℘ also correspond to global sections of O(3p) under (6.1.5),
and since they all have poles of different order, they are linearly independent.
Therefore:

H0(C,O(3p)) ' 〈1, ℘, ℘′〉.
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The corresponding map ΦL : C → CP2 is then

z 7→ [1, ℘(z), ℘′(z)]. (6.1.6)

We can identify its image as follows. Observe that the following seven functions
1, ℘, ℘′, ℘2, ℘℘′, ℘3, (℘′)2 all have a pole of order at most 6 at p, and hence they
correspond to sections of O(6p). However dimH0(C,O(6p)) = 6, and therefore
these functions are linearly dependent. Comparing the coefficients of z−6 shows
that the relation among them is of the form

(℘′)2 = 4℘3 + a1℘℘
′ + a2℘

2 + a3℘
′ + a4℘+ a5, (6.1.7)

for some constants a1, . . . , a5.2 Therefore the image of the map (6.1.6) is de-
fined by a cubic equation. Conversely, it follows from Ex. 2 in Homework 5
that a smooth projective plane curve C ⊂ CP2, defined by a cubic equation,
satisfies dimH1(C,O) = 1, i.e. it has genus 1, and is therefore an elliptic curve
(embedded in CP2 by ΦL with L ' O(p1 + p2 + p3) for some p1, p2, p3 ∈ C).

Let me finish this long, but hopefully instructive example by considering the
embedding ΦL : C → CP3 corresponding to L = O(4p). Arguments completely
similar to the ones above show that

H0(C,O(4p)) ' 〈1, ℘, ℘′, ℘2〉,

and consequently the map ΦL is

z 7→ [1, ℘(z), ℘′(z), ℘2(z)].

Set X = ℘(z), Y = ℘′(z), Z = ℘2(z), and observe that Z = X2 and that the
relation (6.1.7) can be now written as:

Y 2 = 4XZ + a1XY + a2Z + a3Y + a4X + a5.

In other words, ΦL(C) is cut out by two quadratic equations. Conversely, one
can show that a smooth intersection of two (distinct) quadrics in CP3 is an
elliptic curve.

6.2 Kodaira embedding theorem

Theorem 6.2.1 (Kodaira). A holomorphic line bundle on a compact complex
manifold is ample if and only if it is positive.

Proof. One direction is easy: if L is ample, then there exists a k ∈ N such that
Lk is the pullback of the hyperplane line bundle on the projective space. Hence
kc1(L) is the pullback of c1(O(1)), therefore positive.

For the other direction, we need the following result from analysis:

2A more precise analysis will show that a1 = a2 = a3 = 0.
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Theorem 6.2.2 (Hartog’s theorem). Let ∆(r) and ∆(r′) be two closed poly-
disks in Cn with r > r′ and n ≥ 2. Any holomorphic function f defined on a
neighbourhood of ∆(r)\∆(r′) extends to a holomorphic function on ∆(r).

Proof. In order to keep the notation simple, we assume that n = 2 (the general
case is then straightforward). Let z1, z2 be complex coordinates on C2 and
observe that each slice z1 = const of ∆(r)\∆(r′) is either the annulus r′ <
|z2| ≤ r, or the disk |z2| ≤ r. Use the Cauchy formula and define

F (z1, z2) =
1

2πi

∫
|w2|=r

f(z1, w2)

w2 − z2
dw2.

F is defined on ∆(r) and clearly holomorphic. Moreover, in the open connected
subset |z1| > r′ of ∆(r)\∆(r′)

F (z1, z2) = res
w2=z2

f(z1, w2)

w2 − z2
= f(z1, z2),

and so F = f on this open subset; hence F = f on ∆(r)\∆(r′).

We need to show that for any positive line bundle L there exists k ∈ N
such that Lk separates points and tangent directions. I hope that by now you
noticed how useful divisors are, so the technique used here, and in many similar
situations, is to replace a point, which has a high codimension, with its blow-up,
which is a divisor. Let x and y be two distinct points of M and blow up M
at both of them. Denote the result by M̃ and let π : M̃ → M be the natural
projection. Put L̃ = π∗L and consider the pullback map on sections

π∗ : H0(M,Lk)→ H0(M̃, L̃k).

Any section of L̃k defines a section of Lk on M\{x, y}. For n ≥ 2 it extends to

a section on all of M owing to Hartog’s theorem, while for n = 1 M̃ = M and
π∗ is identity. Therefore the map π∗ is an isomorphism on global sections.

Furthermore, since L̃k = π∗Lk, L̃k is trivial along the exceptional divisors
Ex and Ey, i.e.

L̃k
∣∣
Ex

= Ex × Lk
∣∣
x
, L̃k

∣∣
Ey

= Ey × Lk
∣∣
y
.

Let E = Ex∪Ey and denote by rE (resp. by rxy) the restriction of sections to E
(resp. to {x, y}). The above considerations imply that we have a commutative
diagram:

H0(M̃, L̃k)
rE−→ H0(E, L̃k)

↑ π∗ ‖
H0(M,Lk)

rxy−→ Lk
∣∣
x
⊕ Lk

∣∣
y
.
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Therefore, in order to prove that Lk separates points, it suffices to show that
rE is surjective. The kernel of the sheaf map rE : L̃k → L̃k|E is the sheaf of

sections which vanish on E, i.e. the sheaf of local sections of L̃k ⊗ [−E] (it is at
this point that replacing points by divisors pays off). Let us abbreviate the line

bundle L̃k ⊗ [−E] to L̃k(−E). Thus we have a short exact sequence

0 −→ L̃k(−E) −→ L̃k
rE−→ L̃k

∣∣
E
−→ 0,

and the surjectivity of rE on global sections is equivalent to H1(M̃, L̃k(−E)) =

0. Since the sheaf Hn,0 of holomorphic forms of highest degree on M̃ is isomor-
phic to K

M̃
, we can write

L̃k(−E) ' Hn,0
(
L̃k(−E)⊗K∗

M̃

)
.

The Kodaira-Akizuki-Nakano vanishing theorem (Theorem 4.3.3) implies that

H1(M̃, L̃k(−E)) = 0, provided that L̃k(−E)⊗K∗
M̃

is a positive line bundle on

M̃ .
We have seen in the previous chapter (Lemma 5.5.2) that c1(M̃) = π∗c1(M)+

(n− 1)c1([−E]). Therefore we need to prove the positivity of

c1
(
L̃k
)

+ π∗c1(M) + nc1([−E]) = kπ∗c1(L) + π∗c1(M) + nc1([−E]). (6.2.1)

We also know (Lemma 5.5.2 again) that [−Ex]
∣∣
Ex
' H, where H is the hyper-

plane line bundle on Ex ' CPn−1, and similarly for Ey. Therefore [−E]
∣∣
E

has
a hermitian metric which has a positive (Ricci) curvature. This metric can be
extended to a neighbourhood of E and the curvature will stay positive on some
smaller neighbourhood. On the other hand, the bundle [E] has a tautological
section s vanishing exactly on E. In other words s trivialises [E] over M\E and
we can define a flat hermitian metric on [E]

∣∣
M̃\E , and hence on [−E]

∣∣
M̃\E , by

setting |s|2 = 1. We can now glue these two metrics using a bump function, and
obtain a hermitian metric on [−E], the Ricci form ρ of which is positive on a
neighbourhood U1 of E and identically zero outside a neighbourhood U2 ⊃ U1.
By assumption L has a hermitian metric, the curvature φ of which is posi-
tive. Let [iψ] represent c1(M). For sufficiently large k1, k1φ + ψ is positive.

The pullback of k1φ + ψ to M̃ is positive outside E, while at the points of E
π∗(k1φ+ψ)(v, v̄) = 0 if v is tangent to E and is positive if v is normal to E. It
follows that for a sufficiently large k2, the form

π∗(k1φ+ ψ) + (k2π
∗φ+ nρ)

is positive, which proves the positivity of (6.2.1) for k = k1 + k2.
We have shown that for every pair of distinct points x, y, there exists k ∈ N

such that Lk separates x and y. We still need to show that k can be chosen
independently of x and y. But, clearly, if Lk separates x and y, then it separates
nearby points, so this claim follows from the compactness of M .
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Separation of tangent vectors is proved similarly. Let x ∈ M and let π :
M̃ →M be now the blow-up of M at x, with E = π−1(x). Again the pullback
map

π∗ : H0
(
M,Lk

)
−→ H0

(
M̃, L̃k

)
is an isomorphism (L̃ = π∗L). Furthermore, if σ ∈ H0(M,Lk), then σ(x) = 0
is equivalent to π∗σ vanishing on E. Therefore π∗ restricts to an isomorphism

π∗ : H0
(
M,Lk ⊗ Ix

)
−→ H0

(
M̃, L̃k(−E)

)
.

The bundle [−E]
∣∣
E

is identified with the conormal bundle N∗E of E, and hence

H0
(
E, [−E]

∣∣
E

)
' T ∗xM . We obtain a commutative diagram

H0(M̃, L̃k[−E])
rE−→ H0(E, L̃k[−E])

↑ π∗ ‖
H0(M,Lk ⊗ Ix)

dx−→ Lk
∣∣
x
⊗ T ∗xM.

We must show that rE is surjective for large k. We have an exact sequence of
sheaves on M̃ :

0 −→ L̃k[−2E] −→ L̃k[−E]
rE−→ L̃k[−E]

∣∣∣
E
−→ 0,

and the long exact sequence on cohomology implies that the surjectivity of rE
is equivalent to H1

(
M̃, L̃k[−2E]

)
= 0.

As before L̃k[−2E] ' Hn,0
M̃

(
L̃k[−2E]⊗K∗

M̃

)
as sheaves. The same argu-

ment as for x, y shows that L̃k[−2E]⊗K∗
M̃

is positive for large k, and again the
Kodaira-Akizuki-Nakano vanishing theorem implies that

H1(M̃, L̃k[−2E]) = H1
(
M̃,Ωn

M̃

(
L̃k[−2E]⊗K∗

M̃

))
= 0.

Again k can be chosen independently of x. 2

Projectivity of complex manifolds

Theorem 6.2.1 can be reformulated as follows:

Theorem 6.2.3 (Kodaira embedding theorem). A compact complex manifold
is projective if and only if it has a closed positive (1, 1)-form ω such that [ω] is
rational.

Proof. If M is projective, then the Chern class of the hyperplane line bundle
restricted to M is positive and integer. Conversely, suppose that we have a form
ω as in the statement. Then [kω] ∈ H2(M,Z) for some k ∈ N. The exponential
sequence

0 −→ Z i−→ O exp−→ O∗ −→ 0
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yields

· · · −→ H1(M,O∗) c1−→ H2(M,Z)
i∗−→ H2(M,O) −→ . . .

SinceH2(M,O) ' H0,2

∂̄
(M), i∗ maps any (1, 1)-class to zero. Therefore i∗([kω]) =

0 and there is a line bundle L ∈ H1(M,O∗) with c1(L) = [kω]. L is positive,
hence M is projective, owing to Theorem 6.2.1 and Proposition 6.1.5.

On a Kähler manifold we can consider the subset K of H1,1

∂̄
(M)∩H2(M,R)

consisting of positive forms. This is called the Kähler cone of M and is an open
cone (i.e. a convex subset closed under multiplication by positive scalars). The
above theorem says that M is projective if and only if K ∩ H2(M,Q) 6= ∅ (or
K ∩H2(M,Z) 6= ∅).

A simple sufficient condition is given by:

Corollary 6.2.4. A compact Kähler manifold M with H0,2

∂̄
(M) = 0 is projec-

tive.

Proof. In this case H1,1

∂̄
(M) = H2(M,C) = H2(M,Z)⊗C. An open cone (such

as K) must intersect the integer lattice H2(M,Z).

We finish the section by showing that several standard constructions preserve
projectivity.

Corollary 6.2.5. If M1 and M2 are projective, then so is M1 ×M2.

Proof. If ω1, ω2 are rational closed positive (1, 1)-forms on M1,M2, respectively,
and πi : M1×M2 →Mi, i = 1, 2, are the projections, then π∗1ω1 +π∗2ω2 is again
a closed rational positive (1, 1)-form.

Example 6.2.6 (Segre map). This is an embedding

CPn × CPm ↪→ CPN

given by ΦL (§6.1) for the very ample line bundle L = π∗1HCPn ⊗ π∗2HCPm on
CPn × CPm. For example, the Segre embedding of CP1 × CP1 into CP3 is(

[z0, z1] , [w0, w1]
)
7−→ [x0, x1, x2, x3] = [z0w0, z0w1, z1w0, z1w1].

Its image is the quadratic surface x0x3 = x1x2 in CP3.

Corollary 6.2.7. If M is projective, then the blow-up M̃ of M at a point is
projective.

Proof. The proof of the theorem 6.2.1 shows that if L is positive, then L̃k[−E]
is positive for large k.

Corollary 6.2.8. If M̃ →M is a finite covering of compact complex manifolds,
then M̃ is projective if and only if M is.

Proof. The induced map on cohomology H2(M,C) → H2(M̃,C) is just the
division by the number of sheets of the covering. Moreover it preserves positivity.
Hence there is a positive closed (1, 1)-form in H2(M,Q) if and only if there is

one in H2(M̃,Q).
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6.3 Further properties of projective manifolds

There are several interesting results which are valid only for projective mani-
folds. As you may guess, the reason is the existence of an ample (i.e. positive)
line bundle on such manifolds.

Line bundles and divisors II

We are going to prove the property already mentioned in §3.5, namely that
every line bundle on a projective manifold is associated to a divisor. We need
first a result, which is a version of Sard’s theorem in the special case of linear
systems. A linear system on a complex manifold is a subspace V of H0(M,L)
for some line bundle L. The base locus B of a linear system is the set of all
points x ∈M such that s(x) = 0 for all s ∈ V .

Lemma 6.3.1 (Bertini’s theorem). Let V be a linear system on a complex
manifold M , with base locus B. For a generic s ∈ V , s−1(0)\B is smooth.

Proof. Fix a basis s1, . . . , sk of V and consider the map φ :
(
M\B

)
× Ck → C

given by

φ(x, α) = φ
(
x, (α1, . . . , αk)

)
=

k∑
i=1

αisi(x).

Since x 6∈ B, there is an i such that ∂φ
∂αi

∣∣
(x,α)

6= 0, and hence dφ is surjective at

every point (x, α). Consequently φ−1(0) is smooth. Now consider the projection
π : φ−1(0) → Ck. Sard’s theorem implies that for a generic choice of α =

(α1, . . . , αk), the set π−1(α) =
(∑k

i=1 αisi
)−1

(0)\B is smooth.

Proposition 6.3.2. Let M be a projective manifold. Then the natural map
Div(M)→ Pic(M) is surjective.

Proof. Let M be an n-dimensional compact complex manifold embedded in
some CPN . We have to show that every line bundle L on M has a meromorphic
section. First of all, I claim that H1(M,L(k)) = 0 for sufficiently large k ∈ N,
where L(k) denotes the tensor product of L with the restriction of OCPN (k) to
M . This is the same trick as in the proof of the Kodaira theorem: we view L(k)
as the sheaf Hn,0(L(k)⊗K∗M ) of holomorphic n-forms with values in L(k)⊗K∗M .
Since O(1) is positive and M is compact, L(k)⊗K∗M will be positive for large
k, and the claim follows from the Kodaira-Akizuki-Nakano vanishing theorem.

Now I claim that for sufficiently large k, the bundle L(k) has a global holo-
morphic section. We prove this by induction on dimM (i.e. we prove that for any
compact submanifold M of CPN and any line bundle L on M , H0(M,L(k)) 6= 0
for large enough k). The claim is trivial if dimM = 0. Suppose that the
statement holds for all (n − 1)-dimensional projective submanifolds of CPN .
According to the above lemma, we can find a section s of OCPN (1) such that
D = s−1(0) ∩M is smooth (since O(1) is base-free). Now consider the exact
sequence:

0 −→ L(k − 1)
·s−→ L(k) −→ L(k)|D −→ 0.



126 CHAPTER 6. KODAIRA EMBEDDING THEOREM

Let k be large enough so that H1(M,L(k − 1)) = 0 and H0(D,L(k)) 6= 0
(such a k exists by inductive assumption). The long exact sequence implies
that H0(M,L(k)) 6= 0, proving the claim. We finish the proof by observing that
if t is any holomorphic section of L(k) and p is any homogeneous polynomial of
degree k (i.e. a section of O(k)), then t/p is a meromorphic section of L.

Lefschetz hyperplane section theorem3

Theorem 6.3.3. Let M be a compact Kähler manifold with dimCM = n and
V ⊂M a smooth compact complex hypersurface such that the line bundle [V ] is
positive. Then the map

Hq
dR(M)→ Hq

dR(V ),

induced by the inclusion V ↪→M , is an isomorphism for q ≤ n−2 and injective
for q = n− 1.

Proof. Both M and V are compact Kähler, hence their de Rham cohomology
admits the Hodge decomposition. Thanks to the Dolbeault theorem we have to
prove that

Hq(M,Hp,0M )→ Hq(V,Hp,0V )

is an isomorphism if p+ q ≤ n− 2 and injective if p+ q = n− 1. We have two
short exact sequences of sheaves

0 −→ Hp,0M (−V ) −→ Hp,0M
r−→ Hp,0M

∣∣
V
−→ 0, (6.3.1)

whereHp,0M (−V ) is the sheaf of forms vanishing on V , and the conormal sequence
(recall Ex. 2 in Homework 7)

0 −→ [−V ]
∣∣
V
−→ H1,0

M

∣∣
V

i−→ H1,0
V −→ 0.

Taking the p-th exterior power of this last sequence yields:4

0 −→ Hp−1
V (−V ) −→ Hp,0M

∣∣
V

i−→ Hp,0V −→ 0. (6.3.2)

By assumption [−V ] is negative on M , and hence [−V ]
∣∣
V

is negative. The
Kodaira-Akizuki-Nakano vanishing theorem (cf. Remark 4.3.7) implies that

Hq
(
M,Hp,0M (−V )

)
= 0 if p+ q < n and Hq

(
V,Hp−1,0

V (−V )
)

= 0 if p+ q < n.

Now taking the long exact sequences of (6.3.1) and (6.3.2) shows that the com-
position

Hq
(
M,Hp,0M

) r∗−→ Hq
(
V,Hp,0M

∣∣
V

) i∗−→ Hq
(
V,Hp,0V

)
is an isomorphism if p+ q < n− 1 and injective if p+ q = n− 1.

3Also known as the weak Lefschetz theorem.
4I shall leave the linear algebra argument as an exercise.
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Example 6.3.4. Taking M = CPn and V a hypersurface defined by a homoge-
neous polynomial of degree d (so that [V ] = O(d)) shows that the cohomology
of V is the same as that of CPn up to dimension n − 2. Now the Poincaré
duality implies that for q ≥ n Hq

dR(V ) ' Hq−2
dR (CPn). The only cohomology

group which is not completely determined is the middle one Hn−1
dR (V ). This can

indeed be much larger than Hn−1
dR (CPn) - recall exercise 2 from Homework 5,

where you showed that such a V in CP2 is a Riemann surface of genus
(
d−1

2

)
,

and hence dimH1
dR(V ) = (d− 1)(d− 2).

Example 6.3.5. A projective submanifold X of CPn with dimCX = k is called a
complete intersection if it is defined by n−k homogeneous polynomials. Apply-
ing the Lefschetz theorem repeatedly shows that Hq

dR(X) ' Hq
dR(CPn) if q < k.

This allows us to immediately tell that many projective manifolds cannot be
complete intersections. This is the case, for example, for any projective torus
of dimension greater than 1 (since H1

dR(CPn) = 0).

Chow theorem

In its original formulation, Serre’s famous GAGA theorem (see p. 32) asserts the
equivalence of categories of coherent algebraic sheaves on a projective variety
and the category of coherent analytic sheaves on the corresponding analytic
space. Several years before (in 1949) W.-L. Chow proved that projective analytic
varieties are algebraic. I shall now give a proof of this.

First of all, let us define subvarieties.

Definition 6.3.6. Let M be a complex manifold. A subset X ⊂ M is called an
analytic subvariety of M if every point x ∈ X has a neighbourhood U in M such
that X ∩U is the common zero set of a finite number of holomorphic functions
defined on U .

Definition 6.3.7. A subset X of a projective space CPn is called an algebraic
subvariety if it is the common zero set of a number of homogeneous polynomials.

In both cases a subvariety is said to be irreducible if it is not the union of
two other subvarieties.

Theorem 6.3.8 (Chow theorem). Every compact analytic subvariety of CPn is
algebraic.

Proof. We have essentially proved this already in the case of an hypersurface.
If V is a compact analytic hypersurface in CPn, then the line bundle [V ] has
a holomorphic section vanishing on V . However, any line bundle on CPn is
a power of the hyperplane line bundle (Remark 4.3.9), and consequently, any
section of [V ] is a homogeneous polynomial.

For subvarieties of higher codimension we are going to use the technique of
projections, which is of interest on its own. If L is an (n − k − 1)-dimensional
projective subspace of Pn (i.e. L is the projectivisation of an (n−k)-dimensional
linear subspace of Cn+1), then we can project CPn\L onto any complementary
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k-dimensional projective subspace Λ ' CPk by sending a point q ∈ CPn\L to
the intersection of 〈q, L〉 with Λ. If we choose linear coordinates so that

L = {[z0, . . . , zn] ∈ CPn; z0 = · · · = zk = 0},

Λ = {[z0, . . . , zn] ∈ CPn; zk+1 = · · · = zn = 0},

then this projection is simply

π : [z0, . . . , zn] 7−→ [z0, . . . , zk].

Let now X be a k-dimensional compact analytic subvariety of CPn and p 6∈ X.
Choose an (n − k − 2)-dimensional projective subspace L disjoint from p and
such that the (n−k−1)-dimensional subspace 〈p, L〉 is disjoint from X. Project
CPn\L onto a complementary CPk+1. If we can show that the image of X is
still an analytic subvariety, then owing to the argument at the beginning of the
proof, π(X) is the zero locus of a homogeneous polynomial f(z0, . . . , zk+1). This
polynomial, viewed as a polynomial in n + 1 variables, vanishes on X but not
at p, since π(p) 6∈ π(X). Therefore, for every p ∈ CPn, there is a homogeneous
polynomial vanishing on V , but not at p, and Chow’s theorem follows from
Hilbert’s basis theorem.

Thus the proof of Chow’s theorem is reduced to showing that a projection
of an analytic subvariety is an analytic subvariety. A projection from an (n −
k − 2)-dimensional subspace L can be replaced by repeated projections from a
point, so we only need to show that if q 6∈ X, then the image of a compact
k-dimensional analytic subvariety under the projection CPn\{q} to CPn−1 is an
analytic subvariety.

Since the property of being analytic is local, it is sufficient to show that
if Y is an analytic subvariety of a neighbourhood of 0 in Cn, and the line
z1 = · · · = zn−1 = 0 is not contained in Y , then the image of a neighbourhood
of 0 in Y under the projection

π : (z1, . . . , zn) 7−→ (z1, . . . , zn−1)

is an analytic subvariety of a neighbourhood of 0 in Cn−1.
Let Y be given, in a neighbourhood of 0, as the common zero locus of finitely

many holomorphic functions f1, . . . , fr. We may assume (replacing the fi with
their linear combinations, if necessary) that no fi is identically zero along the
zn-axis. The Weierstraß preparation theorem5 implies that we can replace the
fi with functions which are polynomials in zn, i.e. each such function is of the
form

h(w, zn) =

d∑
j=1

aj(w)zjn, (6.3.3)

where each coefficient is a holomorphic function of w = (z1, . . . , zn−1) in a
neighbourhood of 0 ∈ Cn−1. For any polynomial in one variable, its coefficients

5See Griffiths and Harris, pp. 7–8.
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are given by the elementary symmetric polynomials in its roots t1, . . . , td. On
the other hand any symmetric polynomial in t1, . . . , td can be expressed as a
polynomial in elementary symmetric polynomials. Therefore, if t1(w), . . . , td(w)
denote the roots of h(w, ·), where h is of the form (6.3.3), then

h̄(w) =

d∏
i=1

h(ti(w))

is a well-defined holomorphic function in a neighbourhood of 0 ∈ Cn−1. It is
easy to verify that π(Y ) is the common zero locus of functions f1, . . . , fr.

Remark 6.3.9. The proof given here also shows that if f : M → M ′ is a holo-
morphic submersion between complex manifolds and X is an analytic subvariety
of M such that f |X is finite-to-one, then f(X) is an analytic subvariety of M ′.
This is a special case of Remmert’s proper mapping theorem which asserts that
f(X) is an analytic subvariety for any holomorphic map f : M → M ′ such
that f |X is proper. The proof of this is hard; see Griffiths & Harris, pp. 395ff.,
for a proof under an additional assumption, or H. Grauert and R. Remmert
“Coherent analytic sheaves” (Springer 1984) for a proof in full generality.

THE END
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